Mac Operating System :

The Kernel of macOS Tom-Eliott Herfray
el 5 e
T N
Z @ z: E : m

GRIFFITH COLLEGE DUBLIN

Mac Operating System :
The Kernel of macOS

Operating Systems Design
BSC2-0SD OPERATING SYSTEMS DESIGN

By Tom-Eliott Herfray
Student Number : 2999664
tomeliott. herfray@student.griffith.ie

GRIFFITH COLLEGE DUBLIN

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

Abstract

According to StatCounter, in January 2019, macOS accounted for almost
10.9% of the market share of desktop operating systems. This represents several
hundred million devices around the world. This market share is gradually increasing
thanks to the popularity of other Apple platforms, such as iOS, tvOS or watchOS.

As an engineering student, I have used various operating systems for many
years, such as ArchLinux, Fedora, Manjaro or macOS. It is interesting to see how
these different operating systems, which many sometimes mistakenly call “Linux”
(or UNIX), work. In this report, we will see how XNU, the kernel of Darwin, macOS
and iOS systems, works, how it has evolved and how it differs from other OS’s
kernels.

Introduction

Developed in the 1990s after the return of Steve Jobs at Apple, XNU was
officially presented in December 1996 as the kernel of Darwin, an open-source
operating system developed by Apple and derived from NeXTSTEP, BSD and Mach.
Unlike macOS, Darwin does not have the Aqua GUI and the Quartz Graphics Engine,
and many people often confuse Darwin and XNU. Apple presents XNU on its website
as "The Darwin Kernel", which can be confusing.

XNU is an acronym for “X is Not Unix”. Apple considers XNU as an hybrid
kernel that combine the Mach kernel developed at the University of Carnegie Mellon,
with FreeBSD components and a C++ API called 7/O Kit (Input / Output Kit). XNU
was designed to work on x86-32, x86-64, ARM and PowerPC architectures for both
single processor and multi-processor configurations. Note also that Apple no longer
uses PowerPC micro-processors since 2007, preferring Intel processors.

We will focus on the general operation of the kernel XNU : Firstly, we will
focus on Mach, which mainly handles memory and processor resources of macOS.
Secondly, we will see the advantages of FreeBSD (or BSD 4.4) which, unlike Mach,
deals with file, network and process management. Finally, we will briefly explain the
role of the 1/O Kit framework in the kernel.

GRIFFITH COLLEGE DUBLIN 2

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

The macOS Architecture

Nota Bene : To avoid confusion, macOS and Mac OS are not exactly the same systems.
Mac OS, which is also called “Mac OS Classic”, is the ancestor of macOS (from version
1 to version 9.2.2). macOS, also known as “Mac OS X" or “OS X, is very different from
Mac OS and is used since version 10 (“Mac OS X 107). We will talk here about the
macOS’s kernel, which has the advantage over Mac OS to be much less limited.

macOS is a very complex system that has undergone many changes. macOS is
designed in several layers : the visual interface (GUI), APIs, application services,
core services and the kernel. Here is a visual architecture of macOS that I made.

()
macOS GUI "Aqua"
_ _J
()
(\ macOS API
‘ BSD ‘ | macOS Classic Cocoa Java
U | ,
| QuickTi
(] Carbon e Application services)
At [ow |[ommar [|
- y,
CL Core services | Non-GUI API |)
()

Operating System ""Darwin"’

| File Systems | |Pre-emptive kernel| | /O Kit | | Drivers |

Kernel XNU
FreeBSD Mach
-

_J

(Hardware)

Architecture of macOS since version 10 (“Mac OS X 10”)

As we see with this diagram, macOS’s kernel is divided into two “layers” :
Mach 3.0 (a microkernel, which serves as a base for supporting any of several
operating systems) and FreeBSD (a popular open-source version of UNIX which
represents the XNU’s second layer). Each of these two kernels have their use and
their specificity within the system. To them, they make up the basics of macOS.

GRIFFITH COLLEGE DUBLIN 3

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

The XNU Kernel

The ancestor of macOS, Mac OS Classic, was a cooperative multi-tasking
environment, which means that the responsiveness of all processes is compromised if
even one application does not cooperate. Mac OS Classic, with the cooperative multi-
tasking and the lack of memory protection, was very limited compared to macOS.
With macOS, Apple introduced a preemptive kernel, called XNU, where a process
running in kernel-mode can be replaced by another process in the middle of a kernel
process. The kernel ensures the execution of planning processes to share-time and
supports real-time behavior in tasks that require it.

The advantage of the XNU kernel (BSD is derived from UNIX) is to have a
stable and robust system, and also to be able to easily install Linux program. Its role is
to assign to each process its unique address space. With this security, no program can
access to the memory of another program. XNU has also its own address space, called
“kernel-space”. In macOS, no application can change the kernel-space. For macOS,
the address space and kernel-space are managed by the Mach kernel. We will now see
the precise role of Mach and FreeBSD in the use of XNU.

Darwin’s First Layer : FreeBSD

As we saw previously, the XNU kernel is partly derived from BSD (more
especially FreeBSD). FreeBSD provides many advanced features to XNU, like the
boot (BootROM, which is part of the Mac’s hardware, initializes system hardware and
selects an operating system to run), shutdown, or accounting procedures. FreeBSD
deals with files, networking and processes, where Mach is more designed to deal with
processor and memory resources. With the expansion of the Internet, FreeBSD also
brought to Apple the opportunity to properly manage networking with support for
industry standards, and to provide to the user vital functions like email or Internet
services (Firewall security services, HTTP, routing, FTP, etc.). Concerning the local
network, the user can share files (using NFS, cited in the file system section below)
with computers running MacOS Classic or a Linux operating system.

FreeBSD is also widely used on macOS and Darwin to manage file system,
which controls how the data is stored and retrieved on the system. By supporting a
file system, macOS can read and write files using one of six major macOS formats :
HFS+, HFS, UF'S, UDF, ISO-9660 and since 2017, APFS (for Apple File System).
FreeBSD also provides compatibility between macOS and Windows, especially
between MS-DOS and APFS. With file system, the user can reformat the disks on
macOS into MS-DOS or a Windows format.

One of the most important aspects of FreeBSD is also the support of POSIX
standards (for “Portable Operating System Interface”). POSIX is a family of
standards using by FreeBSD and other operating systems to make uniform APIs

1 ———
GRIFFITH COLLEGE DUBLIN 4

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

between UNIX operating systems. POSIX was designed so that programs designed for
a UNLX system can run on a other UNLX system. By compiling a program using
POSIX standards, a UNILX program can run easily on macOS.

I made a small example below to illustrate a POSIX-compliant program. A
program built on Solaris, a POSIX-compliant system, can be easily compiled on
macOS (which uses POSIX standards through FreeBSD), sometimes with some minor
modifications to make.

))

\‘“J A program respecting mac

SO f ar |§“ the POSIX standards 0S

Solaris macOS
using FreeBSD

— -—

Nota Bene : To compile a Windows program on macOS, FreeBSD or a UNIX
operating system, the procedure is different and “Wine” can be an interesting solution.

Finally, if FreeBSD is great for managing network services, files systems and
user management policies like security, Apple has chosen to also use Mach in macOS
for managing process management service and memory management subsystem.

Darwin’s Second Layer : Mach 3.0

XNU is also derived from Mach, an open-source operating system micro-
kernel. One of Mach’s design goals is portability, it manages memory and processor
resources such as CPU usage, provides a protection for memory and handles
scheduling. More precisely, it also provides support for real-time services, virtual
memory and pagers. To understand how Mach works, here is a glossary provided by
Apple explaining the concepts I am going to introduce :

- Tasks : The units of resource ownership, each task consists of a virtual address
space, a port right namespace, and one or more threads (similar to a process) ;

- Threads : The units of CPU execution within a task ;

- Address space : In conjunction with memory managers, Mach implements the
notion of a sparse virtual address space and shared memory ;

- Memory objects : The internal units of memory management. Memory objects
include named entries and regions; they are representations of potentially
persistent data that may be mapped into address spaces.

As I said earlier, Mach primarily manages memory and CPU resources.
Memory is an important part of macOS, especially the virtual memory, that allows
programs to be executed even though they are not stored entirely in memory, and the
protected memory. Apple considers that the “virtual memory is seen as collection of
VM (Virtual Memory) objects and memory objects [...] with a particular owner and
protections — These objects can be modified with objects calls that are available both

1 ———
GRIFFITH COLLEGE DUBLIN 5

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

to the task and to the pagers”. As we saw in the section “The XNU Kernel”, to protect
and manage memory, the kernel assigns a unique address space to each process, or
task. It also assigns the rights to access to the selected resources. macOS gives 4 GB
of protected virtual address to each task to contribute to the stability of applications.
Mach also gives a specific address space to XNU that we call the “kernel-space”. This
kernel-space is the virtual memory area in which all XNU threads reside. In kernel-
space, a user cannot read or write to the kernel space address, else we get a segfault
(“segmentation fault”).

Kernel macOS app macOS app

. = s =) (™)
))
Virtual . .
address Virtual Virtual
space address address
"kernel- space space
space” (4 GB) (4 GB)
(4 GB)
\ J \ J \ y,

Each process, including XNU, gets its own 4 GB of virtual address space.

Under macOS, CPU resource management is handled by the Mach kernel using
a preemptive multi-tasking, unlike Mac OS Classic which used a cooperative multi-
tasking (also called “non-preemptive multi-tasking’’) and where the responsiveness of
all processes is compromised if a single process does not do cooperate. Mach allows
each task in turn to use all the resources with preemptive multi-tasking. This means
that preemption and memory protection lead to a more robust and stable environment.

Mach also provides in addition to memory management and CPU resources a
powerful messaging system. This system lets the threads keep track of the data of the
task and improves the interaction process of programs in the multi-processor
environment. The messaging system also allows the system to start and stop tasks
(that is what we call “fasks scheduling”).

The 1/0 Kit

The final part of the XNU kernel is /O Kit, a framework that provides an
abstract view of the system hardware to the layers of macOS. I/O Kit enables
drivers for printers and other devices (using USB, FireWire, etc.) to be written
quickly and it implements most of the plug-and-play capabilities of the system. We
will not go into the technical details of the framework but note however that even
if /O Kit is not a “kernel” itself like FreeBSD or Mach, it is an important and
integral part of XNU.

1 ———
GRIFFITH COLLEGE DUBLIN 6

Mac Operating System :
The Kernel of macOS Tom-Eliott Herfray

Summary

Today, XNU is a very complete kernel that allows macOS to be a stable,
efficient and “friendly” operating system. We saw in this report that XNU is based on
two other kernels, Mach 3.0 and FreeBSD. We have seen the main role of each of
these kernels. More precisely than Mach managed memory and processor resources,
and FreeBSD managed file, network and process management. Darwin, XNU’s
operating system, is open-source, which means that all developers or non-developers
have full access to the source code (available on GitHub). But Darwin is not just
based on two kernels, it is also based on //O Kit, a sophisticated framework that helps
developers code device drivers for macOS (or even iOS). Some developers also
consider that if we had to describe the macOS’s kernel in only three words, that
would be “I/O Kit — FreeBSD — Mach”.

In conclusion, XNU is a powerful kernel that gave life to several operating
systems, including of course macOS, but also iOS, an operating system used on
several billion devices, or even watchOS and tvOS. XNU also relies on thousands of
libraries and frameworks (like 7/O Kit) but this report was primarily intended to
present the role of the kernel itself. Here is a diagram that summarizes the role of
FreeBSD and Mach in XNU.

()

XNU on macOS and Darwin

\
L
5

(. . Memory management)
Mach 3.0 EBEEEAEFNAHEE
k Process (task/thread) management

J

References

o Mac OS X: The Complete Reference, by Jesse Feiler, Osborne/Mc-Graw-Hill (2001) — ISBN : 0-
07-212663-9, available at Griffith Library ;
The Darwin Kernel Source, by Apple Inc. (2019) — www. github.com/apple/darwin-xnu ;

o Operating Systems A Systematic View >> Sixth Edition, by William S. Davis and T. M.
Rajkumar, Pearson Education Inc. (2005) — ISBN : 0-321-26751-6, available at Griffith Library ;

o Kernel Programming Guide, by Apple Inc. (2013) —
www.developer.apple.com/library/archive/documentation/Darwin/Conceptual ;

o The Documentation Archive, by Apple Inc. (2016) —
www.developer.apple.com/library/archive/navigation.

1 ———
GRIFFITH COLLEGE DUBLIN 7

