
ALGO
Alexandre Duret-Lutz
October 28, 2019

These are incomplete1 lecture notes for the ‘‘ALGO’’ course taught 1 The latest version can be retrieved
from https://www.lrde.epita.
fr/~adl/ens/algo/algo.pdf.
Please email me any correction to
adl@lrde.epita.fr.

to ING1 students at EPITA. This course studies the complexity of algo-
rithms, and introduces students to several mathematical tools useful to
analyze algorithms and derive complexity bounds.

9 Sections or paragraphs introduced
with this mark contain more advanced
material that is not strictly necessary
to understand the rest of the text. You
may want to skip them on first read,
and decide later if you want to read
more.

Contents

Mathematical Background 4
Two ∑ Notations for Sums 4

Logarithms 5

Floor bxc and Ceiling dxe of x 6

Simple Combinatorics 7

Triangular Numbers 8

Tetrahedral Numbers 9

Pyramidal Numbers 10

Sum of an Arithmetic Progression 11

Sum of a Geometric Progression 12R
ea
d
th
is

be
fo
re

th
e
se
co
nd

le
ct
ur
e.

9 Catalan Numbers 13

9 Bounding Sums with Integrals 14

9 Summing Using the Reciprocal 15

9 Finite Calculus 16

Binary Trees 17

Computing Complexities for Algorithms 18
SelectionSort 19

InsertionSort 20

Average-Case Analysis 21

BinarySearch 22

Definitions for Big-Θ, Big-O, and Big-Ω Notations 23

Properties of Big-Θ, Big-O, and Big-Ω Notations 24

Usage of Big-Θ, Big-O, and Big-Ω Notations 25

A Bestiary of Common Complexity Functions 26

Merging two Sorted Sub-Arrays 27

MergeSort 28

Exploring Recurrence Equations 29

https://www.lrde.epita.fr/~adl/ens/algo/algo.pdf
https://www.lrde.epita.fr/~adl/ens/algo/algo.pdf
mailto:adl@lrde.epita.fr

algo 2

9 Solving Recurrence Equations by Differentiation 30

Master Theorem for Recurrence Equations 31

Establishing Upper Bounds by Mathematical Induction 32

When Mathematical Induction on Recurrence Fails 33

More Examples of Complexities 34
Nearly Complete Binary Trees 34

Heaps 34

Heapify and BuildHeap 35

The Complexity of Heapify 36

The Complexity of BuildHeap 37

HeapSort 38

Partition 39

QuickSort 40

Worst and Best Cases for QuickSort 41

Average Complexity of QuickSort 42

QuickSort Optimizations 43

IntroSort, or How to Avoid QuickSort’s Worst Case 44

QuickSelect 45

Average complexity of QuickSelect 46

Linear Selection 47

Space Complexity 48

In-place Algorithms 48

More Sort-Related Topics 49
Stable Sorting Techniques 49

Further Reading 50

algo 3

F NOTATION f

Although this document is written in English, it targets French students. As such, it mixes conventions
from different origins. For instance, I prefer to write ⊆ and ⊂ (for the analogy with ≤ and <) rather than
the ⊂ and convention commonly used in France.

N the set of natural numbers, including 0. N = {0, 1, 2, . . .}
N+ the set of natural numbers, excluding 0. N+ = {1, 2, 3, . . .}
Z the set of integers
R the set of real numbers

A ⊆ B A is a subset of (and possibly equal to) B
A ⊂ B A is a proper subset of B
loga x the logarithm of x in base a page 5
ln x loge x, the natural logarithm page 5
bxc the floor function, largest integer less than or equal to x page 6
dxe the ceiling function, smallest integer greater than or equal to x page 6
xn the nth falling power of x: xn = x(x− 1)(x− 2) . . . (x− n + 1) page 7(
n
k

)
a binomial coefficient:
there are (n

k) =
nk

k! ways to choose k items out of n
page 7

O(f (n)) the set of functions that, up to some multiplicative factor, are dominated
by f (n) asymptotically

pages 23–24

Ω(f (n)) the set of functions that, up to some multiplicative factor, dominate f (n)
asymptotically

pages 23–24

Θ(f (n)) the set of functions that, up to some multiplicative factors, dominate and
are dominated by f (n) asymptotically

pages 23–24

f (n) ∼ g(n) f (n) is asymptotically equivalent to g(n), i.e., lim
n→∞

f (n)
g(n)

= 1 page 24

iff if and only if
positive (strictly) greater than zero (x > 0)
negative (strictly) less than zero (x < 0)

non-positive less than or equal to zero (x ≤ 0)
non-negative greater than or equal to zero (x ≥ 0)

algo 4

Mathematical Background

There are a couple of mathematical notions we need to review before
we turn our attention to algorithms. I expect you to be already famil-
iar with many of those, but you might learn of few tricks along the
way.

Two ∑ Notations for Sums

A sum such as a0 + a1 + · · ·+ an−1 is more compactly written

n−1

∑
k=0

ak or, using a more general form, ∑
0≤k<n

ak.

The latter form has a couple of advantages over the former one.

• As this example demonstrates, we can use the semi-open interval2

2 As programmers you should learn
to love semi-open intervals. Think
for instance about how begin() and
end() are used in the C++ standard
library. If the interval was closed (i.e.,
if it included the value pointed to
by end()) you would not be able to
specify an empty range.0 ≤ k < n instead of the more tedious 0 ≤ k ≤ n− 1.

• The sum ∑
a≤k≤b

k clearly evaluates to 0 when b < a since there is

nothing to sum. This is not so obvious3 with
b

∑
k=a

k. 3 But true nonetheless. I.e., it is wrong

to write
b

∑
k=a

k =
a

∑
k=b

k because the
b

∑
k=a

notation is about going from a to b
using an increment of 1.

• The general form supports the addition of more constraints. The
sum of all odd numbers below 1000 can be expressed as

∑
1≤k<1000

k odd

k or less intuitively
499

∑
k=0

2k + 1. (1)

• The general form makes variable substitutions much less error-
prone. Let us look at the sum of all odd numbers from (1) and see
how we can derive the right-hand expression starting from the
left-hand one.

Since k should be odd, let us replace all occurrences of k by 2k + 1:

∑
1≤k<1000

k odd

k = ∑
1≤2k+1<1000

2k+1 odd

2k + 1

As 2k + 1 is always odd, the constraint is now superfluous:

∑
1≤2k+1<1000

2k+1 odd

2k + 1 = ∑
1≤2k+1<1000

2k + 1

We can simplify 1 ≤ 2k + 1 < 1000 by subtracting 1 from all sides,
and then halving them:

∑
1≤2k+1<1000

2k + 1 = ∑
0≤k<499.5

2k + 1

Now since k is an integer changing 0 ≤ k < 499.5 into the equiva-
lent 0 ≤ k ≤ 499 gives us the right-hand expression of (1).

http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF

algo 5

Logarithms ex 2x10x

ln x
log2 x

log10 x

0 2 4 6 8 10
0

2

4

6

8

10

Figure 1: Various logarithms and their
reciprocal functions. This figure is
restricted to positive values because
negative values will never occur in the
analysis of algorithms.

The logarithm in base a, i.e., the function x 7→ loga x, is the reciprocal
function of x 7→ ax. Figure 1 shows a few examples.

It is common to write ln x = loge x for the natural logarithm4, i.e.,

4 Trivia: x 7→ ln x is sometimes called
Napierian logarithm after John Napier
(known as Neper in France), despite
the fact that the function he defined
in 1614 was different. The natural
logarithm was introduced by Nicolaus
Mercator in 1668 using the series
expansion of ln(1 + x). Finally around
1730 Leonhard Euler defined the
functions ex = limn→∞(1 + x/n)n and
ln x = limn→∞ n(x1/n − 1) and proved
that they are the reciprocal of each
other.

the logarithm in base e. But this natural logarithm will have almost
no use to us. When analyzing algorithms, we will usually encounter
loga x for various integer values of a, and most often a = 2.

There is a simple algorithm for computing a logarithm in any
base, using only elementary operations. This algorithm is also a
perfect exercise to practice logarithms.

Let us compute log10(1385) up to two decimal places. Because
x 7→ log10 x is the reciprocal function of x 7→ 10x we know that
log10(1000) = log10(103) = 3 and log10(10000) = log10(104) = 4.
Furthermore, since 1000 < 1385 < 10000 and log10 is an increasing
function, it follows that 3 < log10(1385) < 4. We are therefore
looking for two digits a and b such that

log10(1385) = 3.ab . . . (2)

To find a, we should subtract 3 from both sides, multiply everything
by 10 and rework the left-hand side as a log10:

log10(1385)− 3 = 0.ab . . .

log10(1385)− log10(103) = 0.ab . . .

log10

(
1385
1000

)
= 0.ab . . .

log10(1.385) = 0.ab . . . (3)
10 log10(1.385) = a.b . . .

log10(1.38510) = a.b . . . (4)
log10(25.9715419 . . .) = a.b . . .

Since 101 < 25.9715419 . . . < 102 we conclude that a = 1. Did
you notice what happened between (2) and (3)? When we have
log10 x = y, removing k from y is equivalent to shifting the decimal
point by k places in x.5 Also, looking at (3) and (4), multiplying y 5 This is because we are working with a

base-10 logarithm.by 10 is equivalent to raising x to its 10th power.6 We can now use a
6 This is independent on the base of
the logarithm: this 10 is the base in
which we represent numbers on the
right-hand side.

similar procedure to find b:

log10(25.9715419 . . .) = 1.b . . .

log10(2.59715419 . . .) = 0.b . . .

log10(2.59715419 . . .10) = b. . . .

log10(13962.955 . . .) = b. . . .

Since 104 < 13962.955 . . . < 105 we conclude that b = 4 and we have
just computed that log10(1385) ≈ 3.14.

You can adjust this algorithm to compute a logarithm in any
base. Using paper and pen, the only difficult step is to compute x10.
However, unless you plan to compute a lot of decimal places, you do
not necessary need a very precise result.7

7 You can compute x10 using only 4
multiplications. Can you see how?
Hint: x4 requires 2 multiplications.

algo 6

Floor bxc and Ceiling dxe of x

x0

x

−2

−2

−1
−1

1

1

2

2

3

3 bxc

dxe

Figure 2: The functions bxc and dxe.

Given a real number x, the notation bxc denotes the largest integer
smaller than x. Conversely, dxe denotes the smallest integer larger
than x. Figure 2 illustrate both functions, called respectively floor
and ceiling.8 For instance bπc = 3 and dπe = 4. These two functions

8 The C standard library has two
functions floor() and ceil() that
round a double accordingly.

have no effect on integers: b12c = d12e = 12. In fact for any real
number x we have:

bxc ≤ dxe
bxc = dxe iff x ∈ Z

1 + bxc = dxe iff x 6∈ Z

For any n ∈ Z and any x ∈ R the following properties hold9:
9 Exercise: demonstrate b−xc = −dxe
using these properties.

bxc < n ⇐⇒ x < n

dxe ≤ n ⇐⇒ x ≤ n

n < dxe ⇐⇒ n < x

n ≤ bxc ⇐⇒ n ≤ x

bxc = n ⇐⇒ x− 1 < n ≤ x ⇐⇒ n ≤ x < n + 1

dxe = n ⇐⇒ x ≤ n < x + 1 ⇐⇒ n− 1 < x ≤ n

For any n ∈ N we have n = bn/2c + dn/2e. We can prove
this equation by considering the parity of n. If n is even, bn/2c =

dn/2e = n/2 and the equation holds trivially. If n is odd, then
bn/2c = n/2− 1/2 and dn/2e = n/2 + 1/2 so the sum is indeed n.

Rounding to the nearest integer can be done with bx + 0.5c or
dx− 0.5e depending on how you want to round half-integers10. 10 i.e., values of the form n + 0.5 with

n ∈ N. Should they be rounded down
to n, or up to n + 1?

Now let us nest these rounding notations. It should be easy to see
that ddxee = bdxec = dxe and dbxce = bbxcc = bxc, i.e., only the
innermost rounding function matters.

Furthermore, for any n ∈N+, m ∈N+ and x ∈ R we have11: 11 Note that these two equations are
only good when n and m are integers.
For instance bb10/.3c/.3c = 111 but
b10/.3/.3c = 110.

bbx/nc/mc = bx/nmc
ddx/ne/me = dx/nme int avg(int a, int b)

{
return (a + b) / 2;

}

Figure 3: If we ignore overflows, this
function computes b a+b

2 c because
dividing an int by another intwill
always round the result towards zero.

The floor notation should be used any time we want to represent
an integer division, for instance as in Figure 3.

When rounding logarithms you should know the following iden-
tity:

dlog2(n + 1)e = blog2(n)c+ 1

To prove that, rewrite n as 2m + p where m ∈ N and 0 ≤ p < 2m.
Then:

blog2(n)c+ 1 =
⌊

log2

(
2m
(

1 +
p

2m

))⌋
+ 1 = m +

⌊
log2

(
1 +

p
2m

)
︸ ︷︷ ︸

1≤···<2

⌋
+ 1

= m + 0 + 1 = m + 1, and

dlog2(n + 1)e =
⌈

log2

(
2m
(

1 +
p + 1

2m

))⌉
= m +

⌈
log2

(
1 +

p + 1
2m

)
︸ ︷︷ ︸

1<···≤2

⌉

= m + 1.

algo 7

Simple Combinatorics

• Assume you have a set S of n different letters. How many differ-
ent words12 of length k can we build using only letters from S,

12 By word, we mean just any sequence
of letters, not necessarily a meaningful
word in some dictionary.

assuming we can use the same letter multiple times? There are
n possible letters for each of the k positions in the word, so the
number of choices is n× n× n× · · · × n︸ ︷︷ ︸

k terms

= nk. See Figure 4.
ε

aaa
aaa
aab
aac

ababa
abb

abc ac

aca

ac
b

ac
c

b

ba

ba
a

ba
b

ba
c

bb

bb
a

bb
b bbc

bc

bca
bcb

bcc

c

ca

caa
cab

cac

cb

cba
cbb
cbc

cc
cca
ccb
ccc
33323130

Figure 4: Over the alphabet {a, b, c}
there are 31 ways to build a 1-letter
word, 32 ways to build a 2-letter word,
and 33 ways to build a 3-letter word.
There is only 30 = 1 way to build the
empty word (denoted ε).

• What if we are only allowed to use each letter of S at most once?
Then after we have selected the first letter among the n available,
we are left with only n− 1 choices for the second letter, n− 2 for
the third letter, etc. The number of words of length k ≤ n we can
build without repeated letter is therefore

n× (n− 1)× (n− 2)× · · · × (n− k + 1)︸ ︷︷ ︸
k terms

= nk =
n!

(n− k)!

ε

a

ab

abc

ac

acb

b

bc

bca

ba

bac

c

ca

cab

cb

cba 33

32

31

30

Figure 5: Without repeating letter there
are only 31 = 3 ways to build a 1-letter
word, 32 = 3× 2 ways to build a 2-
letter word, and 33 = 3× 2× 1 ways to
build a 3-letter word.

See Figure 5 for an example. The notation nk, with an underlined
exponent, is the kth falling power of n: it works like a power except
that its argument is decremented by one after each product.13 We

13 When both n and k are natural
numbers such that k ≤ n, we have
nk = n!/(n − k)!. However, the
falling power can be used even when
n is a complex number, or when k is
larger than n, two cases that are not
supported by the expression using
factorials.

can define the falling power recursively as n0 = 1 and for k > 0,
nk = n× (n− 1)k−1. In particular we have nn = n!.

• Let us now build subsets of S that contain k letters. We could pro-
ceed as we did for building words of length k with unique letters:
choosing the first letter among n, then the second among n − 1,
etc. We can actually associate each word to a set. For instance,
the word ab would correspond to the set {a, b}, the word bc to
{b, c}. The problem is that this correspondence is not a one-to-one
mapping: the word ba would also be mapped to the set {a, b}
since sets are not ordered. For a given set with k letters, there are
kk = k! different words. So the number of subsets of size k built
from a set of size n, is equal to the number of k-letter words we
can build without repeating letters from n letters, divided by the
k! numbers of ways to order these k letters.

nk

k!
=

n!
(n− k)!k!

=

(
n
k

) ∅

{a}

{a, b}

{a, b, c}

{a, c}

{b}

{b, c}

{c}

32/2! = (3
2)

33/3! = (3
3)

31/1! = (3
1)

30/0! = (3
0)

Figure 6: When the words of Figure 5
are converted to sets, the tree collapses
into this lattice.

The number (n
k), pronounced ‘n choose k’, is called binomial co-

efficient because it is the coefficient of xkyn−k in the polynomial
expansion of the nth power of the binomial x + y:

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k

20

21

22

23

24

25

26

27

1
11
121
1331
14641
15101051
1615201561
172135352171

Figure 7: The sum of each line of
Pascal’s triangle is a power of 2.

• What is the total number of subsets of S (of any size)? To build
one subset, we iterate over each letter of S and decide whether
we take it or not. We have 2 possibilities for each of the n letters,
that makes 2n different subsets. On the other hand, this number
of subsets is also the sum of all subsets of different sizes, as com-

puted in the previous paragraph. So we have
n

∑
k=0

(
n
k

)
= 2n as

illustrated by Figure 7.

algo 8

Triangular Numbers
A0 = 0

+1
A1 = 1

+2
A2 = 3

+3
A3 = 6

+4
A4 = 10

+5
A5 = 15

+6
A6 = 21

Figure 8: The first triangular numbers.

The numbers An = 0 + 1 + 2 + · · ·+ n =
n

∑
k=0

k are called triangular

numbers because they can be represented as in Figure 8.
The equality An = n(n + 1)/2 can be demonstrated in several

ways.

• By induction14. You probably already did it when you learned 14 Induction is of no use to you if you
do not already know the solution. If
this was a new problem for which you
suspected (maybe after looking at a
few values) that An = n(n + 1)/2, then
induction would be a way to prove that
your intuition is correct.

induction. The proof is based on the fact that An = An−1 + n.

• By summing twice: once forward, and once backward.15

15 Gauss reportedly found this trick
while he was a child.

An = 0 + 1 + 2 + · · ·+ (n− 1) + n

An = n + (n− 1) + (n− 2) + · · ·+ 1 + 0

2An = n + n + n + · · ·+ n + n

Since there are n + 1 terms on the right-hand side of the last line,
we find that 2An = n(n + 1).

Figure 9 shows a graphical version of this demonstration.

1
2
3

n 1
2
3

n

n

n + 1

Figure 9: Another way to see that
2An = n(n + 1): there are An dots
of each color arranged in a n by n + 1
rectangle.

• The previous demonstration is easily performed using the ∑
notation as well:

2An =

(
∑

0≤k≤n
k

)
+

(
∑

0≤k≤n
k

)
Replace k by n− k in the second sum:

2An =

(
∑

0≤k≤n
k

)
+

(
∑

0≤n−k≤n
n− k

)
Simplify the constraint of the second sum:

2An =

(
∑

0≤k≤n
k

)
+

(
∑

−n≤−k≤0
n− k

)

2An =

(
∑

0≤k≤n
k

)
+

(
∑

0≤k≤n
n− k

)
Finally merge the two sums:

2An = ∑
0≤k≤n

(k + n− k) = ∑
0≤k≤n

n = n(n + 1)

• As seen on page 7, there are (n+1
2) subsets of length 2 in {0, 1, . . . , n}.

Let {x, y} be such a subset, and assume x < y. Let us count all
subsets existing for the different values of x. If x = 0, there are n
possible values for y; if x = 1 we have n− 1 possible values for y;
etc. If x = n there is no value available for y. The sum of all these
n + (n− 1) + · · ·+ 0 just happens to be An. So we have

1
11
121
1331
14641
15101051
1615201561
172135352171

Figure 10: Triangular numbers form a
diagonal of Pascal’s triangle.An =

(
n + 1

2

)
=

(n + 1)2

2!
=

(n + 1)n
2

.

Figure 10 should therefore not be a surprise.16 16 By convention (n
k) = 0 when k > n or

k < 0 (i.e., outside of Pascal’s triangle)
so our (n+1

2) is also valid for A0.

algo 9

Tetrahedral Numbers
B0 = 0

+A1
B1 = 1

+A2

B2 = 4

+A3

B3 = 10

+A4

B4 = 20

+A5

B5 = 35

+A6

B6 = 56

Figure 11: The first tetrahedral num-
bers.

What happens when we sum all consecutive triangle numbers?

Bn = A0 + A1 + · · ·+ An =
n

∑
j=0

Aj =
n

∑
j=0

j

∑
k=0

k

We get tetrahedral numbers, so called because stacking the triangles of
Figure 8 gives you a triangular pyramid as shown in Figure 11.

The closed formula is Bn = n(n + 1)(n + 2)/6 and there are again
a couple of ways to prove it.17 17 Do not confuse this formula with the

Cn = n(n + 1)(2n + 1)/6 from page 10.

• Induction is still a possible option. The key step is that Bn =

Bn−1 + An = (n−1)n(n+1)
6 + n(n+1)

2 = n(n+1)(n+2)
6 .

• Note that the above formula (n−1)n(n+1)
6 + n(n+1)

2 = n(n+1)(n+2)
6 is

simply a long way to write (n+1
3) + (n+1

2) = (n+2
3). You may find it

easier to remember that Bn = (n+2
3), forming another diagonal of

Pascal’s triangle (Figure 12).

1

∑ 1 = n

∑ ∑ 1 = An

∑ ∑ ∑ 1 = Bn

1
11
121
1331
14641
15101051
1615201561
172135352171

Figure 12: Tetrahedral numbers form
another diagonal of Pascal’s triangle.
(Note that these sums implicitly start at
1, not 0 like in the rest of the page; do
you see why it matters in this picture?)

Since each diagonal of Pascal’s triangle is made of the partial sum
of the previous diagonal, you should find very easy to guess a
formula for the sum of consecutive tetrahedral numbers:

n

∑
k=0

k =

(
n + 1

2

)
,

n

∑
j=0

j

∑
k=0

k =

(
n + 2

3

)
,

n

∑
i=0

i

∑
j=0

j

∑
k=0

k =

(
n + 3

4

)
.

• The above two points require you to know (or suspect) that Bn =
n(n+1)(n+2)

6 or Bn = (n+2
3) in order to prove it by induction.

How can we find a closed formula for Bn if we do not know
that? Looking at how balls are stacked in 3D in Figure 11, we
can assume that Bn should represent some volume, i.e., a cu-
bic polynomial. Or if you prefer a more mathematical view: Aj

is a quadratic polynomial, Bn, as the sum of n of these terms,
should be expressible as a cubic polynomial. So we guess Bn =

an3 + bn2 + cn + d and we just need to evaluate this for a couple
of values of n to find a, b, c, and d. Evaluating B0 = 0 tells us that
d = 0. From B1 = 1, B2 = 4, and B3 = 10 we get:

a + b + c = 1

8a + 4b + 2c = 4

27a + 9b + 3c = 10

hence


c = 1− a− b

6a + 2b = 2

24a + 6b = 7

hence


c = 1− a− b

b = 1− 3a

6a + 6 = 7

hence


c = 2/6

b = 3/6

a = 1/6

Thus we have found that n3+3n2+2n
6 , which happens to be equal to

n(n+1)(n+2)
6 , is a polynomial that will work for n = 0, 1, 2, 3, and

we can prove by induction that it is correct for any n ∈N.

algo 10

Pyramidal Numbers C0 = 0
+1

C1 = 1
+4

C2 = 5

+9
C3 = 14

+16
C4 = 30

+25
C5 = 55

+36
C6 = 91

Figure 13: The first pyramidal num-
bers.

The numbers Cn = 02 + 12 + 22 + · · · + n2 =
n

∑
k=0

k2 are called

pyramidal numbers because they represent the number of spheres
stacked in a pyramid with a square base, as shown in Figure 13.

Unlike previous numbers, we will not give the closed formula di-
rectly. It seems remembering the formula is hard for many students,
so maybe it is best to learn three ways to rediscover it.

• Since this is a sum of n squares, and Figure 13 gives a 3D inter-
pretation, we can, as we did on page 9 for tetrahedral numbers,
assume that Cn is cubic polynomial an3 + bn2 + cn + d and use
the first values of Cn to find its coefficients. From C0 = 0, we learn
that d = 0. Using C1 = 1, C2 = 5, and C3 = 14, we get:

a + b + c = 1

8a + 4b + 2c = 5

27a + 9b + 3c = 14

whose solution is


c = 1/6

b = 3/6

a = 2/6

Hence our polynomial is 2n3+3n2+n
6 and without too much effort18 18 Because two of the three roots are

easy to find: 0 and −1.we can factorize it as n(n+1)(2n+1)
6 .

By construction this formula is correct from C0 to C3. If we as-
sume that Cn−1 = (n−1)n(2n−1)

6 , then Cn = Cn−1 + n2 =
n(2n2−3n+1)+6n2

6 = n(2n2+3n+1)
6 = n(n+1)(2n+1)

6 . Hence by induction
our formula is correct for all n ∈N.

• Let us compute S =
n

∑
i=0

(
(i + 1)3 − i3

)
in two ways. First, we

separate it in two sums which almost cancel out each other19: 19 Watch out for the indices in these
two sums! The first sum is changed by
replacing i by i − 1 and rewriting the
range 0 ≤ i− 1 ≤ n into 1 ≤ i ≤ n + 1.
In the second sum we just omit the first
term, because it is equal to 0.

S =
n

∑
i=0

(i + 1)3 −
n

∑
i=0

i3 =
n+1

∑
i=1

i3 −
n

∑
i=1

i3 = (n + 1)3 (5)

In a second approach, we develop the summand and express the
result as a sum of triangular (page 8) and pyramidal numbers:

S =
n

∑
i=0

(3i2 + 3i + 1) = 3Cn + 3An + n + 1 (6)

Since (5) and (6) are two expressions for S, we get that 3Cn +

3An + n + 1 = (n + 1)3. Knowing a formula for An, we get
3Cn = (n + 1)((n + 1)2 − 3

2 n− 1) hence Cn = n(n+1)(2n+1)
6 .

C6 B6 B5= +

Figure 14: A pyramidal number is the
sum of two consecutive tetrahedral
numbers.

• Consider each square used in the layers of a pyramid in Figure 13,
and split them into two triangles by the diagonal. One triangle
(the larger one, drawn using in Figure 14) includes the diagonal,
and the other does not. The sum of the larger triangles of all
layers of Cn is the tetrahedral number Bn (page 9) while the sum
of all smaller triangles is Bn−1. Hence

Cn = Bn + Bn−1 =

(
n + 2

3

)
+

(
n + 1

3

)
=

n(n + 1)(n + 2)
6

+
(n− 1)n(n + 1)

6
=

n(n + 1)(2n + 1)
6

algo 11

Sum of an Arithmetic Progression

When analyzing algorithms, it often happens that the number of op-
erations performed in a loop is a linear function of the loop counter.
Then, the sum of all performed operations has the following form,
for some value of a and b:

Dn = a + (a + b) + (a + 2b) + · · ·+ (a + nb) =
n

∑
k=0

a + kb

Triangular numbers (page 8) are a special case of this sum with
a = 0 and b = 1. In the general case we can rewrite Dn using An:

Dn =

(
n

∑
k=0

a

)
+

(
n

∑
k=0

kb

)
= a(n + 1) + b

n

∑
k=0

k = a(n + 1) + bAn

= a(n + 1) +
bn(n + 1)

2
=

(2a + nb)(n + 1)
2

But the same result is in fact even easier to obtain using Gauss’
trick of summing forward and backward:

Dn = a + (a + b) + (a + 2b) + · · ·+ (a + nb)

Dn = (a + nb) + (a + (n− 1)b) + (a + (n− 2)b) + · · ·+ a

2Dn = (2a + nb) + (2a + nb) + (2a + nb) + · · ·+ (2a + nb)

Hence 2Dn = (2a + nb)(n + 1). Figure 15 gives an example with
a = 1 and b = 2.

1
3
5

2n+1 1
3
5

2n+1

n

2n + 2

Figure 15: The sum On =
n

∑
k=0

2k + 1

of the first n odd numbers is such that
2On = n(2n + 2) hence On = n(n + 1).

The above trick has a huge advantage over expressing Dn using
An: it can be generalized very easily to any partial sum of an arith-
metic progression. For instance, let us assume you want to sum all
the terms 3 + 5i for 100 ≤ i ≤ 1000. Calling S the result, you would
write

S = 503 + 508 + 513 + · · ·+ 5003

S = 5003 + 4998 + 4993 + · · ·+ 503

2S = 5506 + 5506 + 5506 + · · ·+ 5506

The number of terms20 in these sums is 901 since we go from i = 100 20 Always be cautious when calculating
the length of an interval: it is a frequent
source of off-by-one errors.

to i = 1000. Therefore 2S = 5506× 901 and S = 2480453.
For any a, b, v ≤ w, we have

w

∑
k=v

a + kb =
(2a + (v + w)b)(w− v + 1)

2
.

You might find the above formula easier to remember as

((a + vb) + (a + wb))
w− v + 1

2
,

that is: the sum of the first and last terms, multiplied by half the
number of terms.21 21 But do also remember that this is

only valid for arithmetic progressions.

algo 12

Sum of a Geometric Progression

Consider the sum of the terms of a geometric progression of ratio r:

En = 1 + r + r2 + · · ·+ rn =
n

∑
k=0

rk

An easy way to find a closed formula for this sum is to notice that
En and rEn have many terms in common:

En = 1 + r + r2 + · · ·+ rn

rEn = r + r2 + · · ·+ rn + rn+1

hence En − rEn = 1− rn+1

and assuming r 6= 1, En =
1− rn+1

1− r
The formula to remember is therefore:

For any r 6= 1,
n

∑
k=0

rk =
1− rn+1

1− r
(7)

20 nodes
21 nodes
22 nodes
23 nodes

3

∑
k=0

2k = 24 − 1

Figure 16: A complete binary tree of
height 3 has 24 − 1 = 15 nodes.

• When r = 2, we have ∑n
k=0 2k = 1−2n+1

1−2 = 2n+1 − 1, a formula that
should be known by any programmer. For instance the number
of nodes in a complete binary tree of height n (see Figure 16). A
binary number (111 . . . 1)2 that has all its n bits set to 1 represents
the value ∑n−1

k=0 2k = 2n − 1. In particular 28 − 1 is the maximum
value you can represent with a unsigned char variable, since
this type uses 8 bits.

9 We had to assume r 6= 1 because of the division by 1− r, but the

limit22 of 1− rn+1

1− r
when r tends to 1 is actually what we expect:

22 Limits on this page are computed
using L’Hôpital’s rule: if lim

x→c
f (x) =

lim
x→c

g(x) = 0 and lim
x→c

f ′(x)
g′(x)

exists, then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.n

∑
k=0

1k =
n

∑
k=0

1 = n + 1

lim
r→1

1− rn+1

1− r
= lim

r→1

−(n + 1)rn

−1
= n + 1

9 Equation (7) can be used to rediscover the formula for Triangular
Numbers (page 8). To transform ∑ rk into ∑ k, we differentiate
∑ rk with respect to r, giving ∑ krk−1, and then we set r = 1. Of
course we must do these operations on both sides of (7), and we
have to take a limit for r → 1 on the right:

d
dr

n

∑
k=0

rk =
d
dr

1− rn+1

1− r
n

∑
k=1

krk−1 =
−(n + 1)rn(1− r) + (1− rn+1)

(1− r)2

n

∑
k=1

k = lim
r→1

nrn+1 − (n + 1)rn + 1
(1− r)2 = lim

r→1

(n + 1)nrn − (n + 1)nrn−1

2(r− 1)

= lim
r→1

(n + 1)nrn−1(r− 1)
2(r− 1)

=
(n + 1)n

2

Similarly d
dr

(
r d

dr ∑ rk
)
= ∑ k2rk−1 so by setting r = 1 we get the

formula for the Pyramidal Numbers (page 8).23

23 Doing so is left as an exercise to
the reader. If you survive the double
differentiation and the computation
of the limit, and obtain the expected
n(n+1)(2n+1)

6 , treat yourself with a
well-earned lollipop.

algo 13

9 Catalan Numbers

A Dyck word of length 2n is a string built using n opening paren-
theses and n closing parentheses, in such a way that a closing
parenthesis always matches an opening one. For instance w1 =

‘((()()))(())’ is a Dyck word, but w2 = ‘(()))(())()(’ is not.

n Pn Dyck words

0 1 ε (empty word)
1 1 ()
2 2 ()(), (())
3 5 ()()(), ()(()),

(())(), (()()), ((()))
4 14 …
6 42 …
7 132 …

Table 1: Number of Dyck words for
various n, a.k.a. Catalan numbers.

Let Pn be the number of Dyck words of length 2n. This integer
sequence (Table 1) is known as the Catalan numbers24.

24 Named after Eugène Charles Catalan
(1814–1894).

Figure 17: The words
w1 = ‘((()()))(())’ and
w2 = ‘(()))(())()(’ interpreted
as paths on a grid. The letter ‘(’ is up,
while ‘)’ is right. Dyck words corre-
sponds to paths that stay above the
diagonal.

A string with n opening parentheses and n closing parentheses
can be interpreted as a path on a square grid (Figure 17). Starting
from the lower left corner and interpreting the letter ‘(’ and ‘)’
respectively as up and right, we necessarily reach the above right
corner. The number of paths that join the two corners using only n
up and n right movements is (2n

n): from the total of 2n movements
we simply have to choose n which will be the ups. (Or if you prefer
working with words: in a string of 2n characters we have to choose n
positions among the 2n positions available to put the ‘(’ letters.)

x

n

n

flip after x

x
n− 1

n + 1

Figure 18: Flipping all ups and rights
that occur after the first segment below
the diagonal transform a path with n
ups and n rights into a path with n− 1
ups and n + 1 rights.

Not all these (2n
n) paths correspond to Dyck words, only those that

stay above the diagonal. To count the number of paths that do not
correspond to Dyck words, let us consider the first segment of the
path that goes below the diagonal, and flip all up and right move-
ments afterwards (Figure 18). This is a reversible operation that can
only be done on paths that do not represent a Dyck word. Since the
resulting path has only n− 1 up movements, there are (2n

n−1) words of
length 2n that are not Dyck words. We have established that

Pn =

(
2n
n

)
−
(

2n
n− 1

)
(8)

which we can simplify:

=
(2n)(2n− 1) · · · (n + 2)(n + 1)

n!
− (2n)(2n− 1) · · · (n + 2)

(n− 1)!

=
(2n)(2n− 1) · · · (n + 2)(n + 1)

n!

(
1− n

n + 1

)
Pn =

1
n + 1

(
2n
n

)
(9)

Note that (8) tells us that Pn is an integer even if it is not that obvi-
ous from (9).

Catalan numbers have a vast number of applications.25 For in-

25 And also many different proofs.

stance the number of full26 binary trees with n internal nodes is Pn.

26 A binary tree is full if all its internal
nodes have degree 2.

To see that, make a depth-first traversal of some full binary tree and
write ‘(’ each time you get down a left edge, and ‘)’ each time you
get down a right edge (Figure 19 below).

((())) (()()) (())() ()(()) ()()()

Figure 19: The P3 = 5 full binary trees
with 3 internal nodes and their relation
to Dyck words of length 6.

algo 14

9 Bounding Sums with Integrals

The technique presented on this page justifies (and generalizes)
the intuition we used on pages 9 and 10 that the sum of n quadratic
terms should be a cubic polynomial.

−1 0 1 2 n n + 1

f (0) f (1) f (2) f (n)

Figure 20: When f (i) is interpreted as
an area between i and i + 1, we have
f (0) + · · ·+ f (n) ≤

∫ n+1
0 f (k)dk.

−1 0 1 2 n n + 1

f (0) f (1) f (2) f (n)

Figure 21: If f (i) is interpreted as an
area between i − 1 and i, we have
f (0) + · · ·+ f (n) ≥

∫ n
−1 f (k)dk.

For more generality, let us consider the sum f (0) + f (1) + · · ·+
f (n) where f is some monotonically increasing function. Showing
these terms under the graph of f as in Figures 20 and 21 we have∫ n

−1
f (k)dk ≤

n

∑
k=0

f (k) ≤
∫ n+1

0
f (k)dk

Note that the length of the two integration intervals is equal to the
number of terms in the sum.27

27 Using a semi-open interval for the
sum, we can rewrite these inequalities
using the same bounds for the sum and
integrals:∫ n+1

0
f (k− 1)dk ≤∑

0≤k<n+1
f (k) ≤

∫ n+1

0
f (k)dk

These inequalities come in handy to bound a sum that we do
not know how to simplify. For instance, let us pretend that we do
not know how to compute triangular numbers (page 8). We simply
rewrite the above inequalities with f (k) = k:∫ n

−1
kdk ≤

n

∑
k=0

k ≤
∫ n+1

0
kdk

Since the antiderivative28 of k is k2/2 we get:

28 a.k.a. primitive

[
k2

2

]n

−1
≤

n

∑
k=0

k ≤
[

k2

2

]n+1

0

n2 − 1
2
≤

n

∑
k=0

k ≤ (n + 1)2

2

We do not have an exact value for this sum, but from these bounds
we can at least derive some asymptotic equivalence29: 29 f ∼ g iff lim

n→∞

f (n)
g(n)

= 1
n

∑
k=0

k ∼ n2

2

A complexity we will encounter later is log2(n!). Do you think
that using log2(n!) operations to sort n value is efficient? It is hard
to tell if you have no idea how fast log2(n!) grows. Luckily, we can
rewrite log2(n!) as a sum:

log2(n!) = log2

(
n

∏
k=1

k

)
=

n

∑
k=1

log2(k) =
n

∑
k=2

log2(k)

and then we simply apply the bound-by-integral technique30: 30 If you learned that the antiderivative
of ln(x) is x ln(x)− x, just erase it from
your memory, and use the freed space
to store a formula that will work for
all bases instead: the antiderivative of
loga(x) is x loga(x/e).

∫ n

1
log2 kdk ≤

n

∑
k=2

log2(k) ≤
∫ n+1

2
log2 kdk

[
k log2

(
k
e

)]n

1
≤ log2(n!) ≤

[
k log2

(
k
e

)]n+1

2

n log2 n− n log2(e) + log2(e) ≤ log2(n!) ≤ (n + 1) log2(n + 1)− (n + 1) log2(e)− 2 log2

(
2
e

)
From that we easily conclude log2(n!) ∼ n log2 n. A sorting algo-
rithm that performs in the order of n log2 n operations is actually
pretty good.31

31 Later we will demonstrate that any
sorting algorithm that uses compar-
isons to order values requires at least
n log2 n comparisons in the worst case.

For a more precise tie between sums and integrals, look up the
Euler-Maclaurin formula in your preferred encyclopedia.

https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

algo 15

9 Summing Using the Reciprocal

Here is a nifty trick to deal with sums such as ∑iblog2 ic. Let us
consider the following sum, which we will encounter later.

Fn =
n

∑
i=1

(blog2 ic+ 1) = n +
n

∑
i=1
blog2 ic

The trick, pictured on Figure 22, is to express the sum32 of a strictly 32 This trick can be applied to integrals
as well.increasing function f using the sum of its reciprocal f−1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

16

∑
k=1
blog2 kc

4

∑
k=1

2k

Figure 22: The total area covered by
those two sums is a rectangle, and we

have
16

∑
k=1
blog2 kc = 17× 4−

4

∑
k=1

2k .

Generalizing this figure for any n, we have

n

∑
k=1
blog2 kc = (n + 1)blog2 nc −

blog2 nc

∑
k=1

2k = (n + 1)blog2 nc+ 1−
blog2 nc

∑
k=0

2k

= (n + 1)blog2 nc+ 2− 2blog2 nc+1

Finally, Fn = n +
n

∑
i=1
blog2 ic = n + (n + 1)blog2 nc+ 2− 2blog2 nc+1.

F t f

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0

1
2
3

4
5

6

7
8

9

10

11

12
13

14
15

16

Figure 23: The first 16 positive integers
with their binary representation. The
log2(i) + 1 bits needed to represent the
number i are highlighted . If you omit
the last column (a total of n bits), the
two colored areas are the same as in
Figure 22.

Why do we care about such a function? Because blog2(n)c+ 1 is
the number of bits required to represent the number n in binary, and
many algorithms have a run time proportional to that. Fn is the sum
of the bits needed to represent each number between 1 and n (see
Figure 23).

For instance, running a recursive implementation of Bina-
rySearch (page 22) on an array of length n involves at most
2 + blog2(n)c calls (the first one plus the recursive ones) to Bi-
narySearch.

Now let us assume that you are doing a binary search to insert
a new element into a sorted array, and that you do this in a loop,
so that each binary search is applied to an array that has one entry
more than the previous one. The total number of calls the Binary-
Search (including recursive calls) will therefore have the form

j

∑
k=i

(2 + blog2 kc)

where i and j depends on the initial size of the array and the number
of iterations (i.e., binary search + insertion) performed.

algo 16

9 Finite Calculus

For those of you curious to learn new tricks, here is something called
Finite Calculus. This page should by no means be understood as a
reference on this subject, instead, consider it as a teaser33. 33 For a more serious presentation of

Finite Calculus, I suggest you start with
Finite Calculus: A Tutorial for Solving
Nasty Sums, by David Gleich.

The idea is that a sum of kα over a half-open interval behaves like
the integral of kα over the same interval. So summing these falling
powers34 should be very natural (at least if you remember how to 34 The falling power was defined on

page 7 as k0 = 1 and kα = k(k− 1)α−1.integrate). Compare the following equations:

∑
0≤k<n

1 = n
∫ n

0
1dk = n

∑
0≤k<n

k =
n2

2

∫ n

0
kdk =

n2

2

∑
0≤k<n

k2 =
n3

3

∫ n

0
k2dk =

n3

3

∑
0≤k<n

kα =
nα+1

α + 1

∫ n

0
kαdk =

nα+1

α + 1

These work on non-zero based intervals as you would expect from
an integral. For instance

∑
i≤k<j

kα =

[
kα+1

α + 1

]j

i
=

jα+1 − iα+1

α + 1

Following these rules, we can for instance compute the tetrahedral
numbers of page 9 very easily (just remember to use semi-open
intervals35): 35 They have to be closed on the left

side, and open on the right side.

Bn = ∑
0≤j<n+1

∑
0≤k<j+1

k = ∑
0≤j<n+1

(j + 1)2

2
=

(n + 2)3

6
− 13

6︸ ︷︷ ︸
0

=
(n + 2)3

6

If we look at functions other than falling powers, the analogy
between sum and integral does not always exist. For instance, it
would be tempting to see the sum of 2x as the analogous of the
integral of ex:

∑
i≤k<j

2k = 2j − 2i
∫ j

i
ekdk = ej − ei

but the sum and integral of xk do not actually exhibit that much
similarities:

∑
i≤k<j

xk =
xj − xi

x− 1

∫ j

i
xkdk =

xj − xi

ln x

https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20finite%20calculus.pdf
https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20finite%20calculus.pdf

algo 17

Binary Trees

Let us define a binary tree recursively as follows: a binary tree is
either the empty tree ∅, or a pair of binary trees (L, R) where L is
called the left child, while R is the right child.

(((∅, ∅), ∅), ((∅, (∅, ∅)), (∅, ∅)))

((∅, ∅), ∅)

(∅, ∅)

((∅, (∅, ∅)), (∅, ∅))

(∅, (∅, ∅))

(∅, ∅)

(∅, ∅)

Figure 24: A graphical rep-
resentation of the binary tree
(((∅, ∅), ∅), ((∅, (∅, ∅)), (∅, ∅))).

Figure 25: A nicer representation of
the same binary tree. This tree is not
full because it has two internal nodes of
degree 1.

As Figure 24 illustrates, a binary tree can be represented as a
graph where each pair (L, R) is represented by a node connected
to new nodes created for each of its non-empty children. These
graphs are traditionally drawn going down, with the left and right
children located on the corresponding side below their parent node.
With this drawing convention the shape of the graph is enough to
uniquely identify a binary tree, so we can forgo the mathematical
notations and work only with pictures such as Figure 25.

A node that has only empty children (i.e., a node labeled by
(∅, ∅)) is called a leaf node. The other nodes are called internal
nodes. These two sets of nodes are shown with two colors on Fig-
ures 24 and 25, but this coloration is purely cosmetic. The topmost
node is called the root of the tree36. The degree of a node is the num- 36 In Figure 25 the root is an internal

node. Can you build a tree where the
root is a leaf?

ber of non-empty children: the leaves are the nodes with degree 0,
while internal nodes have degree 1 or 2.

0

1

2

3

depth

Figure 26: A full binary tree: each
internal node has two non-empty
children. The height of this tree is 3.

A full binary tree is a binary tree where all internal nodes have
degree 2. The binary tree of Figure 25 is not full, while the one of
Figure 26 is. Figure 19 on page 13 shows all possible full binary trees
with 3 internal nodes.

The depth of a node is the number of edges between this node and
the root. The root itself has depth 0; its children have depth 1; its
grand children have depth 2; etc. The height of a tree is the maximum
depth of its nodes.37 37 We could also write ‘‘the maximum

depth of its leaves’’, because for any
internal node there exists a deeper
leave.

You should be able to prove the following properties38 by yourself:
38 All of these are for binary trees, they
do not assume the binary tree to be full.

• A binary tree with n nodes has n− 1 edges.39

39 Hint: what do every node but the
root have?

• A binary tree with ` leaves has exactly ` − 1 internal nodes of
degree 2.

• A binary tree of height h has at most 2h leaves.

• The height of a binary tree with ` > 0 leaves is at least dlog2 `e.

• The number of nodes of a binary tree of height h is at most 2h+1 −
1.

• The height of a binary tree with n > 0 nodes is at least dlog2(n +

1)− 1e, which we have shown on page 6 to be equal to blog2 nc.

A full binary tree of height h is balanced if the depth of each leaf
is either h or h − 1. For instance, the full binary tree of Figure 26
is balanced because all its leaves have depth 2 or 3. A balanced full
binary tree of height h necessarily has ∑h−1

k=0 2k = 2h − 1 nodes
of depth h − 1 or smaller and between 1 and 2h nodes of depth h.
So if we write n the number of nodes, we have 2h ≤ n < 2h+1,
hence h ≤ log2(n) < h + 1 and because h has to be an integer:
h = blog2(n)c. The height of a balanced full binary tree of n nodes is
therefore always blog2(n)c.

algo 18

Computing Complexities for Algorithms

The time complexity of an algorithm, often noted T(n), is a func-
tion that indicates how long the algorithm will take to process an
input of size n. Similarly, the space complexity S(n) measures the ex-
tra memory that the algorithm requires. These two definitions are
vague40 on purpose, as there are different ways to compute and 40 What would be the units of n, T(n),

and S(n)?express these quantities, depending on how we plan to use them:

• A complexity can be given as a precise formula. For instance, we
might say that SelectionSort requires n(n − 1) comparisons
and n swaps to sort an array of size n. If these are the most fre-
quent operations in the algorithm, this suggests that T(n) can be
expressed as a quadratic polynomial T(n) = an2 + bn + c. Know-
ing this, we can compute the coefficients a, b, and c for a given
implementation41 of SelectionSort by measuring its run time

41 Two implementations of the same
algorithm are likely to have different
coefficients.

on a few arrays of different sizes.

T1

T2

0 2 4 6 8 10 12
0

1,000

2,000

3,000

Figure 27: T1(n) = 10n2 + 14n + 316
and T2(n) = 2n3 + 5n + 4.

If the implementation of two sorting algorithms A1 and A2 have
for time complexity T1(n) and T2(n) as shown on Figure 27, we
can see that A1 is better for n < 8, and A2 for n > 8.

• A complexity can be given using Landau’s notation, to give an
idea of its order. For instance, we would say that SelectionSort
has time complexity T(n) = Θ(n2). This means that when n tends
to ∞, T(n) behaves like n2 up to some multiplicative factor.

This notation simplifies the derivations of complexities because it
is only concerned about the asymptotic behavior of the algorithm.
For instance, a Θ(n log n) algorithm will be more efficient than a
Θ(n2) algorithm for large values of n. However, it tells us nothing
about the behavior for small values of n.

With this notation 10n2 + 2n and 2n2 + 10n would both be written
Θ(n2). Because of those hidden constants, we can hardly compare
two algorithms that have the same order of complexity.

• In computational complexity theory, problems (not algorithms)42 42 Sorting an array is a problem that can
be solved by many different algorithms.are classified according to their difficulty. For instance, the class

PTIME (often abbreviated P) is the set of all problems that can be
solved by some algorithm in polynomial time on a deterministic
Turing machine. The class EXPTIME contains problems that can
be solved in exponential time.43 These classes are broad: PTIME 43 Obviously PTIME ⊂ EXPTIME.

doesn’t distinguish between linear or cubic complexities, and
EXPTIME does not distinguish between 2n and 10n, although
these differences certainly do matter to us as programmers.

In this lecture, we shall focus only on how to derive complexities of
the first two kinds.

algo 19

SelectionSort

This is probably the simplest sorting algorithm to study.
smallest i

values, sorted
largest n − i

values, unsorted

0 i n

≤

Figure 28: Loop invariant for Selec-
tionSort.

2 7 1 4 6 5 8 3

1 7 2 4 6 5 8 3

1 2 7 4 6 5 8 3

1 2 3 4 6 5 8 7

1 2 3 4 6 5 8 7

1 2 3 4 5 6 8 7

1 2 3 4 5 6 8 7

1 2 3 4 5 6 7 8

i

i

i

i

i

i

i

Figure 29: The colored arrows show
the exchanges performed on line 6
by SelectionSort. Exactly n − 1
swaps are needed to sort an array of n
elements.

Given an array A containing n values to sort in increasing order,
SelectionSort maintains the loop invariant depicted by Figure 28:
at any iteration i, the values in the range A[0..i − 1] are the smallest
i values of A in increasing order (i.e., this part is sorted and will not
be changed), while the values in A[i..n− 1] are unsorted and larger
than all the values in A[0..i− 1].

When i = 0 the array is completely unsorted, and when i = n the
array is fully sorted. Actually we can stop after i = n − 2 because
after this iteration the only ‘‘unsorted’’ value, A[n− 1], is necessarily
the largest value in the array, so it is already at the right place.

To increase i while maintaining this invariant, all we need is to
exchange A[i] with the minimum value of A[i..n− 1]. This gives us
the following algorithm (illustrated by Figure 29):

SelectionSort(A, n) (executions)
1 for i← 0 to n− 2 do n− 1
2 min← i n− 1
3 for j← i + 1 to n− 1 do (n− 1)n/2
4 if A[j] < A[min] (n− 1)n/2
5 min← j ≤ (n− 1)n/2
6 A[min]↔ A[i] n− 1

Because line 1 iterates from 0 to n − 2, we can easily tell that lines
1, 2, and 6 will be executed n − 1 times. The other three lines are
involved in two nested loops: for a given i the loop on line 3 will
make (n− 1) + 1− (i + 1) = n− i− 1 iterations. We have to sum this
for all i using for instance the formula from page 11:

n−2

∑
i=0

(n− i− 1) =
((n− 1) + (1))(n− 1)

2
=

(n− 1)n
2

Finally line 5 should have an execution count that is at most (n −
1)n/2 since it is only executed if the previous comparison succeeds.

SelectionSort performs (n− 1)n/2 comparisons (line 4) and
n− 1 exchanges (line 6). Since the execution counts of all the other
lines are also expressed using these quantities, we should be able to
approximate44 the total number of operations performed (or even

44 This is not exactly true, because
line 5 may not be proportional to any
of those. However, because line 5 is
simple and execute less often than
the comparisons, it should have little
influence in practice.

the time to execute the algorithm) as a linear combination of these
two quantities: a polynomial of the form an2 + bn + c.

>>> import numpy as np
>>> x=[1000,2000,5000,10000,
... 20000,50000,100000,200000]
>>> y=[0.001166,0.004356,
... 0.018224,0.052226,0.173569,
... 0.921581,3.678394,14.70667]
>>> p = np.polyfit(x, y, deg=2)
>>> print(p)
[3.67619503e-10 -4.42217128e-08
9.81022492e-03]
>>> np.polyval(p, 2000000)/60
24.506656289555412

Figure 30: Using numpy to find a
quadratic polynomial that is a best fit
(in a least-square sense) to our data
set, and then predict the run time of
our implementation on an input of size
2, 000, 000.

We can now predict the behavior of a SelectionSort imple-
mentation after measuring it on a few arrays of different sizes. For
instance, if an implementation gives the following timings:
size: 1, 000 2, 000 5, 000 10, 000 20, 000 50, 000 100, 000 200, 000
time: 0.001166 0.004356 0.018224 0.052226 0.173569 0.921581 3.678394 14.70667

we can use a least-square regression to fit these points to the follow-
ing quadratic polynomial as shown on Figure 30:

3.676 · 10−10︸ ︷︷ ︸
a

×n2 − 4.422 · 10−8︸ ︷︷ ︸
b

×n + 9.810 · 10−3︸ ︷︷ ︸
c

Now we can estimate we need 24.5 minutes to sort 2,000,000 values.

algo 20

InsertionSort
sorted values unsorted values
0 i n

Figure 31: Loop invariant for Inser-
tionSort.

While InsertionSort’s loop invariant (Figure 31) looks similar
to the invariant of SelectionSort (page 19), it is actually more
relaxed: there is no requirement for all the sorted values in A[0..i −
1] to be smaller than the unsorted values in A[i..n− 1]. We can start
with i = 1 because a sub-array of size 1 is always sorted. To increase
i, it is necessary to insert A[i] at the correct position in the sorted
range, shifting some values to the right to make some room. The
array will be sorted when we reach i = n, i.e., after the iteration for
i = n− 1.

2 7 1 4 6 5 8 3

2 7 1 4 6 5 8 3

1 2 7 4 6 5 8 3

1 2 4 7 6 5 8 3

1 2 4 6 7 5 8 3

1 2 4 5 6 7 8 3

1 2 4 5 6 7 8 3

1 2 3 4 5 6 7 8

keyi

keyi

keyi

keyi

keyi

keyi

keyi

Figure 32: Running InsertionSort
on an example. For each iteration the
purple arrows represent the assign-
ments on lines 2 and 7, while the blue
arrows are those from lines 5.

There are actually a couple of ways to implement the shift-to-
insert procedure.45 The pseudo-code below (illustrated by Fig-

45 Another option worth investigating
is to locate the position to insert with
a binary search, and then shift all
values at once using memmove() or
equivalent.

ure 32) scans the sorted values from right to left, shifting right all
values greater than the one we want to insert (stored in the variable
key), and until it finds a smaller value or the start of the array.

InsertionSort(A, n) (executions)
1 for i← 1 to n− 1 do n− 1
2 key← A[i] n− 1
3 j← i− 1 n− 1
4 while j ≥ 0 and A[j] > key do ∑i(ti + 1)
5 A[j + 1]← A[j] ∑i ti

6 j← j− 1 ∑i ti

7 A[j + 1]← key n− 1

Lines 1, 2, 3, and 7 are obviously always executed n − 1 times.
However, we are not able to give a precise count for lines 4, 5, and
6. If we let ti denote the number of iterations of the while loop for
a given i, then we can write that lines 5 and 6 are both executed
∑n−1

i=1 ti times. Similarly line 4 is executed ∑n−1
i=1 (ti + 1) times because

the condition has to be evaluated one more time before deciding to
exit the while loop.

Our problem is that the actual value of ti depends on the contents
of the array A to sort, so we cannot compute a precise number of
operations that is independent of A. Instead let us look at some
extreme cases: what are the best and worst scenarios?

• The best case is when lines 5 and 6 are never executed.46 In that 46 For this to occur, key (which contains
A[i]) must always be larger or equal to
A[i− 1], i.e., A must already be sorted.

case, ti = 0 for all i, and line 4 is executed ∑n−1
i=1 (ti + 1) = n −

1 times. The entire algorithm therefore executes a number of
operations that is proportional to n− 1, i.e., it is a linear function.

• The worst case is when ti is maximal for each iteration.47 In that 47 This happens when key is smaller
than all values in A[0..i − 1] and the
while loop stops when j < 0.

case the while loop executes its body for all values between j =

i− 1 and j = 0, i.e., it performs ti = i iterations for a given i. The
number of executions of lines 5 and 6 is therefore ∑n−1

i=1 i = (n−1)n
2

while lines 4 runs ∑n−1
i=1 (i+ 1) = (n+2)(n−1)

2 times. In this scenario,
the total number of operations is a quadratic polynomial.

We conclude that InsertionSort is quadratic in the worst case,
and linear in the best case.48

48 Can you guess how InsertionSort
behaves on the average? See page 21.

algo 21

Average-Case Analysis

Knowing the worst and best case complexities of some algorithm is
important, but it does not really tells us how it behaves usually. This
is where an average analysis can be helpful: if possible we would
like to consider all possible inputs of size n, compute the number
of operations performed on each of them, and average the result.
This procedure is not really practical, because we are usually not
able (or willing) to compute a complexity for each individual case.
Therefore, we resort to statistics and probabilities, making some
hypothesis on the distribution of inputs. Instead of averaging on all
possible inputs, we will also usually consider only different possible
shapes of inputs, maybe with different probabilities.

2 7 1 4 6 5 8 3

1 2 3 4 5 6 7 8

4 10 2 6 9 8 11 5

2 4 5 6 8 9 10 11

Figure 33: Two different arrays that
have the same input order will be
handled similarly by the sorting
algorithm.

Let us consider InsertionSort from page 20 again, and as-
sume for simplicity that all the values in the array A are different.
Although the two arrays of Figure 33 are different, from the point of
view of the sorting algorithm they correspond the same input order
and they can be sorted with the exact same operations.

So instead of averaging InsertionSort over all inputs of size
n, we will only consider all possible input orders. Each order can
be given as a permutation π = (π1, π2, . . . , πn) of {1, 2, . . . , n},
and there are n! such permutations possible. For instance, the input
order of the two arrays in Figure 33 corresponds to the permutation
(2, 7, 1, 4, 6, 5, 8, 3).

Given a permutation π, we say that (i, j) is an inversion if i < j
and πi > πj. For instance, the permutation (2, 7, 1, 4, 6, 5, 8, 3)
has 11 inversions: (1, 3), (2, 3), (2, 4), (2, 5), (2, 6), (2, 8), (4, 8),
(5, 6), (5, 8), (6, 8), and (7, 8). Note that the sorted permutation
(1, 2, 3, 4, 5, 6, 7, 8) contains no inversion, while the reverse permu-
tation (8, 7, 6, 5, 4, 3, 2, 1) contains n(n− 1)/2 inversions49. At every 49 This is the maximum number of per-

mutations. Indeed, every permutation
is a pair (i, j) satisfying i < j. There
are n(n − 1) pairs, and half of them
satisfies i < j.

iteration i of InsertionSort, when ti values are shifted right to
insert A[i] to their left, exactly ti inversions are canceled. The total
number of executions of line 5 of InsertionSort, i.e., ∑n−1

i=1 ti is
therefore equal to the number of inversions in the input array.50 50 We counted 11 inversions for

(2, 7, 1, 4, 6, 5, 8, 3), and you can check
that there are indeed 11 blue arrows on
Figure 32 (page 20).

Back to our average-case analysis. To count how many times line 5
will be executed on average51 we only need to know the average

51 We should write this as E[∑n−1
i=1 ti],

that is, the expected sum of all tis.
number of inversions in a permutation of size n. For each permu-
tation (π1, . . . , πi, . . . , πi, . . . , πn) that contains the inversion (i, j),
there exists a permutation (π1, . . . , πj, . . . , πi, . . . , πn) that does not
contain this inversion. This one-to-one mapping means that each
inversion (i, j) has exactly 1

2 chance to occur in a random permuta-
tion.52 The expected number of inversions in a random permutation 52 Because half of all the n! existing

permutations have the inversion (i, j),
and the remaining half does not.

is therefore 1
2 (

n
2), that is the number of possible inversion multiplied

by their probability to occur.
We conclude that on the average case, lines 5 and 6 are executed

1
2 (

n
2) = n(n−1)

4 times53, which is just half of our worst case scenario. 53 The average number of executions of
line 7 is left as an exercise to the reader.The average number of operations of InsertionSort is therefore a

quadratic function.

algo 22

BinarySearch

So far we have studied two iterative algorithms, but we should also
know how to deal with recursive algorithms. As a very simple ex-
ample, let us consider BinarySearch.

This takes a sorted array A[b..e − 1], a value v, and returns the
index where v is in A, or where it should be in case it is not.

2 4 5 6 8 9 10 11

2 4 5 6 8 9 10 11

2 4 5 6 8 9 10 11

2 4 5 6 8 9 10 11

BinarySearch(A, 0, 8, 7) :
b m e

BinarySearch(A, 0, 4, 7) :
b m e

BinarySearch(A, 3, 4, 7) :
bm e

BinarySearch(A, 4, 4, 7) :
be

return 4

Figure 34: Recursive call to Binary-
Search showing the evolution of b
and e (and the calculated m) when
searching for the value 7 in the array.

BinarySearch(A, b, e, v)
1 if b < e then
2 m← b(b + e)/2c
3 if v = A[m] then
4 return m
5 else
6 if v < A[m] then
7 return BinarySearch(A, b, m, v)
8 else
9 return BinarySearch(A, m + 1, e, v)

10 else
11 return b

unsigned s(unsigned n)
{

if (n == 0) return 1;
return 1 + s(n/2);

}

Figure 35: Straightforward, recursive
implementation of S(n).

unsigned s(unsigned n)
{

unsigned res = 1;
while (n != 0)

{
++res;
n /= 2; // same as n >>= 1

}
return res;

}

Figure 36: Iterative implementation of
S(n).

The algorithm first checks whether the middle value A[m] is
equal to v, otherwise it looks for v recursively in either A[b..m− 1] or
A[m + 1..e− 1].

Let us write n = e − b for the size of the array, and S(n) for
the number of calls (including recursive calls) to BinarySearch
needed to locate a value in the worst case. Clearly S(0) = 1 because
calling BinarySearch with b = e will return immediately. For
n ≥ 1, the worst-case scenario is when the value is never found, and
the recursion always occurs on the larger of the two halves. Since
one value has been removed, these halves have length b(n− 1)/2c
and d(n− 1)/2e = bn/2c, and the latter is the larger one. Therefore,
in the worst case, the number of calls to BinarySearch satisfies

S(n) =

1 when n = 0,

1 + S (bn/2c) when n ≥ 1.

You can actually solve this recursive equation (i.e., find a formula
for S(n)) as if you had to replace a recursive implementation of this
function (Figure 35) by an iterative version. Every time S is called
recursively, its argument is divided by two, and 1 is added to the
result. We could do this in a simple loop, as in Figure 36. So S(n) is
equal to 1 plus the number of times we need to perform an integer
division of n by 2 to reach 0. This integer division is similar to a right
shift by one bit, so S(n) is equal to 1 plus the number of bits needed
to represent n.54 In other words:

54 The number (110010)2 = 25 + 24 + 21,
needs 6 bits, because its left-most 1-
bit is the number 5 (counting from
0). We have 25 ≤ m < 26 hence
5 ≤ log2(m) < 6. More generally,
the number of the left-most 1-bit in
the binary representation of any non-
negative integer m is blog2(m)c, and
since bits are numbered from 0, the
number of bits needed to represent m
in base 2 is 1 + blog2(m)c.

S(n) = 2 + blog2(n)c if n ≥ 1, and S(0) = 1

From this formula, we have a pretty good idea of the behavior of
BinarySearch. Since the number of operations performed dur-
ing each of these calls can be bounded by some constant c, the run
time of BinarySearch cannot exceed c × S(n) in the worst-case
scenario.55

55 Later, using notation introduced on
page 23 we shall write that Binary-
Search is a O(log n) algorithm for this
reason.

algo 23

Definitions for Big-Θ, Big-O, and Big-Ω Notations56 56 Those are sometimes called Landau’s
notations, although what Landau really
invented was the small o notation. For
some history about the notations, read
‘‘Big Omicron and Big Theta and Big
Omega’’ by D. Knuth.

When we computed the number of operations performed by Selec-
tionSort (page 19) we concluded its run time should be a polyno-
mial of the form an2 + bn + c, and after running some experiments
we even actually computed the values of a, b, and c. Of course these
coefficients will be different if the same code is compiled differently,
or executed on a different computer. However, the shape of the func-
tion an2 + bn + c is independent of these implementation details: the
run time of SelectionSort has to be a second-order polynomial.
Most importantly, when n tends towards ∞ the most important term
in this function will be an2 and the bn + c part will be negligible. We
like to remember SelectionSort as a quadratic algorithm, because
n2 is the dominant term in its complexity function.

The Θ, O, and Ω notations help making calculations using these
dominant terms without bothering with all the implementation-
related constants like a, b, and c.

• f (n) ∈ Θ(g(n)) expresses the fact that f (n)’s asymptotic behav-
ior57 is comparable to g(n), up to some multiplicative factor. For

57 i.e. when n→ ∞

instance an2 + bn + c ∈ Θ(n2). We say that SelectionSort’s
complexity is Θ(n2).

n

c2g(n)

c1g(n)

f (n)

n0

Figure 37: f (n) ∈ Θ(g(n)): after some
n0 the function f (n) is bounded by
two copies of g(n) with different scale
factors.

The formal definition of f (n) ∈ Θ(g(n)) states that there must
exist two positive constants c1 and c2 so that f (n) is bounded
below by c1g(n) and bounded above by c2g(n) for large values of
n. This is illustrated by Figure 37.

Θ(g(n)) =

{
f (n)

∣∣∣∣∣ ∃c1 > 0, ∃c2 > 0, ∃n0 ∈N,

∀n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

}

• f (n) ∈ O(g(n)) expresses the fact that f (n)’s asymptotic behav-
ior is dominated by g(n), up to some multiplicative factor. For
instance, InsertionSort’s complexity58 can range from linear

58 cf. page 20

to quadratic depending on its input, so we can say it is in O(n2),
meaning its order is at most quadratic.

n

cg(n)

| f (n)|

n0

Figure 38: f (n) ∈ O(g(n)): after some
n0 the function | f (n)| is bounded above
by cg(n) for some constant c.

O(g(n)) can be defined as the set of all functions whose magni-
tude is bounded above by cg(n) for some c > 0 and large n:

O(g(n)) = { f (n) | ∃c > 0, ∃n0 ∈N, ∀n ≥ n0, | f (n)| ≤ cg(n)}

• f (n) ∈ Ω(g(n)) expresses the fact that f (n)’s asymptotic behavior
dominates g(n), up to some multiplicative factor. For instance,
InsertionSort’s complexity is in Ω(n) since it is at least linear
but may be larger.

n

cg(n)

f (n)

n0

Figure 39: f (n) ∈ Ω(g(n)): after some
n0 the function f (n) is bounded below
by cg(n) for some constant c.

Ω(g(n)) can be defined as the set of all functions bounded below
by cg(n) for some c > 0 and large n:

Ω(g(n)) = { f (n) | ∃c > 0, ∃n0 ∈N, ∀n ≥ n0, 0 ≤ cg(n) ≤ f (n)}

These definitions imply that Θ(g(n)) = O(g(n)) ∩Ω(g(n)).

https://danluu.com/knuth-big-o.pdf
https://danluu.com/knuth-big-o.pdf

algo 24

Properties of Big-Θ, Big-O, and Big-Ω Notations

Although Θ(g(n)), O(g(n)), and Ω(g(n)) are defined as sets of
functions, we often abuse the notation to mean one function in this set.
For instance, we would write Θ(n) + Θ(n2) = Θ(n2), which we can
read as ‘‘any linear function added to any quadratic function is a quadratic
function’’59, although a more rigorous way to write this would be

59 Note that this equality really goes
one way only: in this context the
notation ‘‘=’’ works like the word ‘‘is’’
in English. For instance, ‘‘Θ(n) =
O(n2)’’ means that any function in
Θ(n) is in O(n2), but the reverse does
not hold.{ f (n) + g(n) | f (n) ∈ Θ(n), g(n) ∈ Θ(n2)} ⊆ Θ(n2).

With the above convention in mind, we have the following simpli-
fications, where f (n) and g(n) are positive functions60 and λ > 0 is

60 Since we are concerned with a
number of operations performed by
some algorithm, we will (almost)
always have positive functions, and
they will usually be increasing.a positive constant:

λ = Θ(1) λ = O(1)

f (n) = Θ(f (n)) f (n) = O(f (n))

Θ(f (n)) + Θ(g(n)) = Θ(f (n) + g(n)) O(f (n)) + O(g(n)) = O(f (n) + g(n))

Θ(f (n) + g(n)) = Θ(max(f (n), g(n))) O(f (n) + g(n)) = O(max(f (n), g(n)))

Θ(f (n)) ·Θ(g(n)) = Θ(f (n) · g(n)) O(f (n)) ·O(g(n)) = O(f (n) · g(n))
Θ(λ f (n)) = Θ(f (n)) O(λ f (n)) = O(f (n))

These equalities, which can be proved61 from the definitions of Θ 61 Do not trust me, try it.

and O given on page 23, hold for Ω as well. Following these rules we
have that 4n2 + 3n + 1 = Θ(4n2 + 3n + 1) = Θ(4n2) = Θ(n2), but we
can generalize this to any polynomial: aknk + ak−1nk−1 + · · ·+ a1n +

a0 = Θ(nk).
Things get a little fancier when we combine Θ, O and Ω. For

instance, we have Θ(n2) + O(n2) = Θ(n2) because the sum of a
quadratic function with a function that is at most quadratic will al-
ways be quadratic, and we have Θ(n2) + Ω(n2) = Ω(n2) because the
sum of a quadratic function with a function that is at least quadratic
will be at least quadratic.

o(g(n))
` = 0

0 < ` < ∞

ω(g(n))
` = ∞

O(g(n))

Θ(g(n))

Ω(g(n))

Figure 40: Relation between o(g(n)),
O(g(n)), Θ(g(n)), Ω(g(n)), and
ω(g(n)). If the limit ` = limn→∞

f (n)
g(n)

exists, f (n) belongs to one of the round
classes.

When limn→∞
f (n)
g(n) = ` exists, we can use its value to decide

whether f (n) belongs to Θ(g(n)), O(g(n)), or Ω(g(n)):

if lim
n→∞

f (n)
g(n)

= c > 0 then f (n) = Θ(g(n))

if lim
n→∞

f (n)
g(n)

= 0 then f (n) = O(g(n)) and f (n) 6= Θ(g(n))

if lim
n→∞

f (n)
g(n)

= ∞ then f (n) = Ω(g(n)) and f (n) 6= Θ(g(n))

Note that limn→∞
f (n)
g(n) = 0 is the definition f (n) = o(g(n)). We

actually have o(g(n)) ⊂ O(g(n)) \ Θ(g(n)). Similarly, people oc-
casionally write f (n) = ω(g(n)) when limn→∞

f (n)
g(n) = ∞, so that

we have f (n) = o(g(n)) ⇐⇒ g(n) = ω(f (n)) just like we have
f (n) = O(g(n)) ⇐⇒ g(n) = Ω(f (n)).

See Figure 40 for a Venn diagram showing how these different
sets relate to each other.

Exercises. 1. Show that 1 + sin(n) + n is in Θ(n). 2. Show that for
any a and any b > 0, the function (n + a)b is in Θ(nb). 3. Show that
n + n sin(n) is in O(n) but is not in Θ(n). 4. Show that 2n + n sin(n)
is in Θ(n). 5. Prove Θ(logi n) = Θ(logj n) for any i > 1 and j > 1.

http://en.wikipedia.org/wiki/Venn_diagram

algo 25

Usage of Big-Θ, Big-O, and Big-Ω Notations

Let us consider again SelectionSort62 and show how to annotate 62 cf. page 19

it with these notations to derive its complexity.

SelectionSort(A, n)
1 for i← 0 to n− 2 do Θ(n)
2 min← i Θ(n)
3 for j← i + 1 to n− 1 do Θ(n2)

4 if A[j] < A[min] Θ(n2)

5 min← j O(n2)

6 A[min]↔ A[i] Θ(n)

Θ(n2)

For each line, we essentially make the same computations as
before: we know that lines 1, 2 and 6 are executed n− 1 times, which
is a linear function, so we simply write Θ(n). Also, we know that
lines 3 and 4 will be executed ∑n−2

i=0 n− i− 1 times, but we need not
compute this sum precisely. Summing a linear function between
a constant and n is like integrating63 a linear function between a 63 cf. page 14

constant and n: it will give a quadratic function, so we simply write
Θ(n2). Finally, line 5 can be executed as many times as line 4, but it
could be executed less, so we write O(n2) to indicate that this is an
upper bound. Now the complexity of the SelectionSort is simply
the sum of the complexity of all its lines: Θ(n) + Θ(n) + Θ(n2) +

Θ(n2) + O(n2) + Θ(n) = Θ(n2). We write that SelectionSort
runs in Θ(n2), or that its time complexity64 is Θ(n2). We shall often

64 When people say just complexity
they usually mean time complexity,
i.e., a class of functions like Θ(n2) or
O(n3), into which that function giving
the run time of the algorithm for an
input of size n (or equivalently the
number of operations performed)
belongs. Another complexity that can
be studied is the space complexity: how
many extra space does the algorithm
require to process an input of size n.
SelectionSort only needs a constant
amount of additional memory (for
the variables i, j, and min) regardless
of n, so its state-space complexity is
S(n) = Θ(1)

write T(n) = Θ(n2) instead of the time complexity is Θ(n2).
We can use similar annotation on InsertionSort65 and con-

65 cf. page 20

clude that its complexity is O(n2):

InsertionSort(A, n)
1 for i← 1 to n− 1 do Θ(n)
2 key← A[i] Θ(n)
3 j← i− 1 Θ(n)
4 while j ≥ 0 and A[j] > key do O(n2)

5 A[j + 1]← A[j] O(n2)

6 j← j− 1 O(n2)

7 A[j + 1]← key Θ(n)

O(n2)

Such annotations can also be used with recursive algorithms
(such as our presentation of BinarySearch), but they produce a
recursive equation that the complexity function must satisfy, and we
will explain how to deal with those later.66 66 Starting on page 28.

algo 26

A Bestiary of Common Complexity Functions

We will often compare algorithms with different time complexities,
saying, for instance, that a Θ(n2) algorithm is better than a Θ(n3) al-
gorithm.67 To visualize how far apart different complexity functions

67 Note that as soon as we use the Θ,
O, or Ω notations, we are discussing
only about the asymptotic complexity,
i.e., when n → ∞. It would be wrong
to assume that an Θ(n2) algorithm is
always better than a Θ(n3) algorithm,
especially for small values of n. See for
instance Figure 27 on page 18.

are, consider Table 2 at the bottom of this page. It assumes we have a
computer that can execute 3× 109 operations per second68 and con-

68 If we assume that one operation is
executed in one CPU cycle, we can
think of it as a 3GHz computer.

siders many complexity functions we will encounter later. This table
assumes a precise count of operations, like n, not a complexity class
like Θ(n), so just keep in mind that an algorithm with complexity
Θ(n) should have a run time more or less proportional to what the
table gives in the n column.

Here are some algorithms that illustrate each complexity class:
Θ(n) is the cost of computing the minimum or maximum value in

an array of size n. It is also the worst-case complexity of searching
a value in an unsorted array.69

69 Because it is Θ(n) in the worst case,
we would write that the search of
a value in an unsorted array can be
implemented by a O(n) algorithm.Θ(log n) is the worst-case complexity of searching a value in a

sorted array using BinarySearch.70 It is also the worst-case 70 Likewise, we would write that Bi-
narySearch is a O(log n) algorithm.
Note that we do not specify the base
of the log when writing O(log n),
Θ(log n), or Ω(log n) because all log-
arithm functions are equal up to a
constant factor.

complexity of searching a value in a balanced binary search tree.
Θ(n log n) is the typical complexity of a good sorting algorithm that

relies on comparisons to sort values.71

71 e.g., MergeSort, page 28.

Θ(n2) is the complexity of SelectionSort72 on an array of size n,

72 cf. page 19
or the complexity of adding two matrices of size n× n.

Θ(n3) is the complexity for the naive73 algorithm to multiply two
73 The one that implements
cij = ∑k aikbkj as a triple loop.

matrices of size n × n. You probably do not want to use it to
multiply two 100 000× 100 000 matrices.

Θ(nlog2(7)) is the complexity of multiplying two n × n matrices
using Strassen’s algorithm74. Note that log2(7) ≈ 2.81 so even if 74 a clever way to recursively express

such a product using 7 products of
sub-matrices of size n

2 ×
n
2

the difference between 3 and 2.81 is small, you can appreciate the
difference between n3 and n2.81.

Θ(2n) arises naturally in many problems that enumerate all sub-
sets of n elements. For instance, the determinization of a n-state
finite automaton is an O(2n) algorithm, because it constructs an
automaton that contains 2n states in the worst case.

Table 2: An algorithm that requires
f (n) CPU cycles to process an input of
size n will execute in f (n)/(3× 109)
seconds on a 3GHz CPU. This table
shows run times for different f and n.

input number f (n) of operations to perform
size n log2 n n n log2 n n2 nlog2(7) n3 2n

101 1.1 ns 3.3 ns 11.1 ns 33.3 ns 0.2µs 0.3µs 0.3 ms
102 2.2 ns 33.3 ns 0.2µs 3.3µs 0.1 ms 0.3 ms 1.3× 1013 y
103 3.3 ns 0.3µs 3.3µs 0.3 ms 88.1 ms 0.3 s 1.1× 10284 y
104 4.4 ns 3.3µs 44.2µs 33.3 ms 56.5 s 5.5 min 6.3× 103002 y
105 5.5 ns 33.3µs 0.5 ms 3.3 s 10.1 h 3.8 d
106 6.6 ns 0.3 ms 6.6 ms 5.5 min 0.7 y 10.6 y
107 7.8 ns 3.3 ms 77.5 ms 9.3 h 473.8 y 10 570.0 y
108 8.9 ns 33.3 ms 0.9 s 28.6 d 30 402.1 y
109 10.0 ns 0.3 s 10.0 s 10.6 y
1010 11.0 ns 3.3 s 1.8 min 1057.0 y

algo 27

Merging two Sorted Sub-Arrays
· · · · · ·

· · · · · ·

i j k

A :

i k

A :

Merge(A, i, j, k)

Figure 41: Merge(A, i, j, k) takes two
consecutive sorted sub-arrays A[i..j− 1]
and A[j..k− 1] reorder the entire range.

The Merge procedure will be used on next page to build Merge-
Sort, a better sorting algorithm than what we have seen so far.
Merge takes an array A and three indices i, j, and k, such that the
values in the sub-array A[i..j− 1] are sorted (in increasing order),
and the values in A[j..k− 1] are also sorted. The goal is to reorganize
all these values so that A[i..k− 1] is sorted (Figure 41).

Merge(A, i, j, k)
1 `← i Θ(1)
2 r ← j Θ(1)
3 for b← i to k− 1 do Θ(n) for n = k− i
4 if r = k or (` < j and A[`] ≤ A[r]) Θ(n)
5 B[b]← A[`] O(n)
6 `← `+ 1 O(n)
7 else
8 B[b]← A[r] O(n)
9 r ← r + 1 O(n)

10 A[i..k− 1]← B[i..k− 1] Θ(n)

Θ(n)

The procedure works in two steps. First, lines 1–9, a temporary
array B is filled with the sorted values, then, on line 10, the part of A
that we had to sort is overwritten with the contents of B. This array
B is supposed to be at least as large as A.

1 3 4 7 2 5 6 8

1 2 3

i

`

b

j

r

k

A :

B :

Figure 42: Merge on an example, after
the third iteration of its main loop. The
arrows show previous executions of
lines 5 or 8.

The actual merging, in lines 1–10, is done using three indices: `
(for left) points to the smallest unused value of A[i..j − 1], r (for
right) points to the smallest unused value of A[j..k− 1], and b points
to the current entry of B to fill. B is simply filled from left to right,
with the smallest value between A[`] and A[r]. Figure 42 shows an
example with the various involved indices.

Of course at some point the value of one of the two sub-arrays
will all be used: then either ` will reach j, or r will reach k. In these
cases, the extra conditions on line 4 ensure that the remaining values
will always be taken from the other sub-array.

If we use n = k − i to denote the size of the range to sort, the
complexity of Merge is quite straightforward to establish. The loop
on line 3 performs exactly n iterations, so lines 3 and 4 both account
for Θ(n) operations. Lines 5, 6, 8, and 9 taken individually are each
executed at most n times75, so we write O(n). Finally line 10 is a 75 In fact lines 5 and 6 are necessarily

executed j− i times, while lines 8 and
9 are executed exactly k − i times, so
taken together these two groups of
lines are executed n times. We could
therefore lump all these four lines into
a big Θ(n) but it would not change our
result.

trap: it is actually copying n values from B to A, so it has to performs
Θ(n) operations.

The total complexity is Θ(n): merging two sorted sub-arrays can
be done in linear time.

algo 28

MergeSort

‘‘Divide and conquer algorithms’’76 are designed around the following 76 We will discuss this class of algo-
rithms in more details later.idea: when faced with a complex problem, try to divide the problem

in smaller sub-problems that are easier to solve (this is the divide
step), and once these sub-problems are solved, use their solutions
to construct a solution to the large problem (the conquer step). The
division into smaller problems is usually done recursively until the
problems are so small that their solutions are obvious.

The MergeSort algorithm follows this idea: when given an
unsorted array of size n > 1, it divides it into two unsorted arrays
of size n/2 and recursively sorts those.77 Once the two halves are

77 Obviously this is a problem when n is
odd, since the size of an array must be
an integer. So in practice we have one
sub-array of size b n

2 c and the other of
size n− b n

2 c = d
n
2 e.

sorted, the complete sorted array is built using the Merge proce-
dure described on page 27. Of course the recursive calls to sorts the
arrays of size n/2 will probably divide the arrays into two arrays of
size n/4. Eventually the recursion will stop on arrays of size 1: those
are already sorted!

2 7 1 4 6 5 8 3
i j k

2 7 1 4 6 5 8 3

2 7 1 4 6 5 8 3

2 7 1 4 6 5 8 3

2 7 1 4 6 5 8 3

2 7 1 4 5 6 3 8

1 2 4 7 3 5 6 8

1 2 3 4 5 6 7 8

Figure 43: Running MergeSort on
an example. Each arrow represents one
call to MergeSort on the unsorted
array above the arrow, and producing
the sorted array at the bottom of the
arrow. The two recursive calls are
pictured on the sides of the arrow.

Here is the pseudo-code for MergeSort. We assume that A, the
array to be sorted between indices i (included) and j (excluded),
will be modified in place. Figure 43 illustrates it.

MergeSort(A, i, k) T(1) T(n), n > 1
1 if k− i > 1 Θ(1) Θ(1)

2 j←
⌊

i + k
2

⌋
Θ(1)

3 MergeSort(A, i, j) T(b n
2 c)

4 MergeSort(A, j, k) T(d n
2 e)

5 Merge(A, i, j, k) Θ(n)

Let n = k − i be the size of the array to sort, and let T(n) denote
the time complexity of MergeSort. By looking at the pseudo-code,
we can see that when n = 1, only the first line is executed in constant
time, so T(1) = Θ(1). When n > 1, the first two lines cost Θ(1);
then we have two recursive calls, one on an array of size b n

2 c, and the
other on an array of size d n

2 e, those cost T(b n
2 c) + T(d n

2 e) operations;
and finally we call Merge on an array of size n, which we know
costs Θ(n). The Θ(n) of line 5 dominates the Θ(1) of lines 1 and 2,
so the complexity T(n) is a function that satisfies

T(n) =

Θ(1) if n = 1

T
(⌈ n

2
⌉)

+ T
(⌊ n

2
⌋)

+ Θ(n) else

From these constraints, we can find what complexity class T(n)
belongs to. Can you guess the solution here? We will see different
ways to solve this type of equations on the following pages.

Note that in practice we also have T(2) = Θ(1) and T(3) = Θ(1)
because the number of operations needed to process a fixed-size
input can always be bounded by a constant. So we usually write

T(n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ Θ(n)

without mentioning that T(n) = Θ(1).

algo 29

Exploring Recurrence Equations

Let us first consider recurrence equations that do not involve the Θ,
O, Ω notations. For instance, let M(n) denote the number of times
line 4 of Merge (page 27) is executed while running MergeSort
(page 28) on an array of length n. Since each call to Merge on a
sub-array of length n executes line 4 exactly n times, we have:

M(n) =

0 if n = 1

M
(⌈ n

2
⌉)

+ M
(⌊ n

2
⌋)

+ n for n ≥ 2

#include <stdio.h>

unsigned m(unsigned n)
{

if (n == 1) return 0;
return m(n / 2) + m(n - n/2) + n;

}

unsigned m_floor(unsigned n)
{

if (n == 1) return 0;
return 2 * m_floor(n / 2) + n;

}

unsigned m_ceil(unsigned n)
{

if (n == 1) return 0;
return 2 * m_ceil(n - n / 2) + n;

}

int main()
{

for (unsigned n = 1; n <= 256; ++n)
printf("%5u %5u %5u %5u\n",

n, m_floor(n),
m(n), m_ceil(n));

}

Figure 44: Computing M(n), Mfloor(n),
and Mceil(n) to draw Figure 45.

1 32 64 128 256
0

500

1,000

1,500

2,000

n

Mceil
M
Mfloor

Figure 45: Plot of M(n), Mfloor(n), and
Mceil(n), as computed in Figure 44.

At first, the mix of d·e and b·cmight look intimidating. One can
wonder if it would not be easier to solve equations such as

Mfloor(n) = 2Mfloor(b n
2 c) + n with Mfloor(1) = 0

or Mceil(n) = 2Mceil(d n
2 e) + n with Mceil(1) = 0

We can write a small program (Figure 44) to compute the first val-
ues from these functions and plot them (Figure 45 on this page, and
Table 3 on next page). What can we make from this plot? First, we
obviously have Mfloor(n) ≤ M(n) ≤ Mceil(n) and this is easy to prove
from our definitions. Then, these three functions coincide on values
of n that are powers of 2: this should not be a surprise as d·e and b·c
are useless in this case. If n = 2m, solving any of the these equations
amounts to solving:

M(2m) = 2M(2m−1) + 2m if m ≥ 1, and M(20) = 0

Dividing everything by 2m, we have M(2m)
2m = M(2m−1)

2m−1 + 1, and we
can iterate this definition until we reach M(20):

M(2m)
2m = M(2m−1)

2m−1 + 1 = M(2m−2)
2m−2 + 2 = M(2m−3)

2m−3 + 3 = · · · = M(20)
20 +m = m

So M(2m) = m2m and since m = log2 n it follows that M(n) =

n log2 n, but only if n is a power of two. How far is n log2 n from
M(n)? After writing another small program, we can plot Figure 46:
M(n) appears closer to n log2 n than Mfloor and Mceil are. From the
same figure, we also easily see (this is not a proof) that all three
functions satisfy 1

2 n log2 n ≤ M(n) ≤ 2n log2 n, which means that
they are all in Θ(n log n).

1 256 1,024 2,048
0.6

0.8

1

1.2

1.4

1.6

n

Mceil(n)/n log2 n
M(n)/n log2 n
Mfloor(n)/n log2 n

Figure 46: The ratio between the three
M functions, and n log2 n.

We will see later78 that as long as all we want is a complexity class

78 cf. page 31

(such as Θ(n log n)), we can usually ignore the d·e or b·c functions
in this type of recurrence equations.

However, if we need an exact solution these d·e or b·c functions
do matter. Figure 45 leaves no doubt about that. On next page, we
show how to compute an exact solution for M(n).

algo 30

9 Solving Recurrence Equations by Differentiation n Mfloor(n) M(n) Mceil(n)

1 0 0 0
2 2 2 2
3 3 5 7
4 8 8 8
5 9 12 19
6 12 16 20
7 13 20 23
8 24 24 24
9 25 29 47
10 28 34 48
11 29 39 51
12 36 44 52
13 37 49 59
14 40 54 60
15 41 59 63
16 64 64 64

Table 3: The first values of Mfloor(n),
M(n), Mceil(n), as defined on page 29.

Let us consider the recurrence M from previous page:

M(n) =

0 if n = 1

M
(⌈ n

2
⌉)

+ M
(⌊ n

2
⌋)

+ n for n ≥ 2

We will solve this equation by calculating U(n) = M(n + 1) −
M(n) and then realizing that U(n) satisfies a recurrence equation we
have already seen previously.

Notice first that
⌈ n

2
⌉
=
⌊ n+1

2
⌋
, so we can rewrite M(n) using only

b·c:

M(n) = M
(⌊

n + 1
2

⌋)
+ M

(⌊n
2

⌋)
+ n

M(n + 1) = M
(⌊

n + 2
2

⌋)
+ M

(⌊
n + 1

2

⌋)
+ n + 1

M(n + 1)−M(n) = M
(⌊

n + 2
2

⌋)
−M

(⌊n
2

⌋)
+ 1

M(n + 1)−M(n) = M
(⌊n

2

⌋
+ 1
)
−M

(⌊n
2

⌋)
+ 1

Now if we let U(n) = M(n + 1)−M(n) we have

U(n) =

2 if n = 1

U
(⌊ n

2
⌋)

+ 1 if n > 2

Do you recognize this equation? For any n ≥ 1 this definition of
U(n) is the same as the definition of S(n) from page 22, so we can
conclude that U(n) = 2 + blog2 nc.

Now, since we have U(n) = M(n + 1)−M(n), it follows that

M(n) = M(1) + U(1) + U(2) + U(3) + · · ·+ U(n− 1)

M(n) = 0 + ∑
1≤i<n

U(i)

M(n) = ∑
1≤i<n

(2 + blog2 nc)

M(n) = (n− 1) + ∑
1≤i<n

(1 + blog2 ic)

And this is a sum we studied on page 15:

n−1

∑
i=1

(1 + blog2 ic) = n + 1 + nblog2(n− 1)c − 2blog2(n−1)c+1

So we can conclude79 that

79 It is very easy to forget a b·c or a little
−1 somewhere while making this kind
of calculation. To detect such mistakes,
I usually evaluate both formulas (here,
the definition of M(n) at the top of the
page, and the one at the bottom) on a
handful of values, and check that they
are the same (here, the values should
be those given by Table 3).

M(n) =

0 if n = 1

2n + nblog2(n− 1)c − 2blog2(n−1)c+1 if n ≥ 2

algo 31

Master Theorem for Recurrence Equations

The following theorem can be used to solve many (but not all) recur-
rence equations derived from recursive algorithms, typically those
obtained from divide-and-conquer algorithms.80 80 Divide-and-conquer algorithms will

typically perform a recursive calls on
sub-problems of size n

b , and use f (n)
operations to split the problem and
merge the sub-solutions.

Theorem 1 (Master Theorem). Consider a recurrence equation such as

T(n) = Θ(1) for n < n0

T(n) = aT
(n

b
+ O(1)

)
+ f (n) for n ≥ n0

with a ≥ 1, b > 1, and n0 > 0.
1. If f (n) = O(n(logb a)−ε) for some ε > 0, then T(n) = Θ(nlogb a).
2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a log n).
3. If f (n) = Ω(n(logb a)+ε) for some ε > 0, and if a f (n

b) ≤ c f (n) for
some c < 1 and all large values of n, then T(n) = Θ(f (n)).

4. In other cases81, the theorem does not apply.

81 These are the cases where ε or c
cannot be found. For instance, if you
consider T(n) = 2T(n/2) + n log2 n,
you can show that n log2 n = Ω(n1)
but you cannot find any ε > 0 such that
n log2 n = Ω(n1+ε), so the theorem
does not apply.

Figures 47–49 illustrate this theorem by picturing the work f (n)
performed by each recursive call as a rectangle.
Examples:
• T(n) = T

(⌈ n
2
⌉)

+ T
(⌊ n

2
⌋)

+ Θ(n). This is the recursive equation
for the complexity of MergeSort, as established on page 28. We
can rewrite it as82: T(n) = 2T

(n
2 + O(1)

)
+ Θ(n).

82 Note how the n
b + O(1) in the theo-

rem accommodates any terms like n
b , or

b n
b c, or even d

n+5
b e. This is great news:

no need to worry about integer parts
anymore!

So we have a = b = 2 and f (n) = Θ(n). We compute nlogb a =

nlog2 2 = n1, and we now have to check which case of the the-
orem applies. Is f (n) in O(n1−ε) (case 1), in Θ(n1) (case 2), or
in Ω(n1+ε) (case 3)? Obviously we are in the second case since
f (n) = Θ(n) = Θ(n1). We therefore conclude immediately that
MergeSort has complexity T(n) = Θ(n log n).

∼
lo

g 3
n

Θ(n)

Figure 47: If T(n) = 2T(n/3) + Θ(n)
we are in the third case of the theorem:
the work performed by recursive calls
diminishes exponentially fast, so only
the initial Θ(n) matters.

∼
lo

g 3
n

Θ(n)

Figure 48: If T(n) = 3T(n/3) +
Θ(n) we are in the second case of the
theorem: the total work performed
at each level of the recursion is the
same, so the complexity Θ(n) has to be
multiplied by Θ(log n).

• T(n) = T(b n
2 c) + Θ(1). This is the worst case complexity of

BinarySearch (page 22). We have a = 1, b = 2, and f (n) =

Θ(1). nlog2 1 = n0 = 1. Again in case 2, we conclude that T(n) =
Θ(n0 log n) = Θ(log n) for the worst case of BinarySearch.83

83 So we can say that BinarySearch is
O(log n) in general.

• T(n) =
√

n + 3T(n/4). We have b = 4, a = 3, and log4 3 ≈ 0.792.
We have

√
n = n1/2 = O(n(log4 3)−ε) if we take for instance ε =

0.2. So this is the first case of the theorem, an T(n) = Θ(nlog4 3).

• T(n) = n2 + 3T(n/4). Same constants, different f (n). This times,
n2 = Ω(n(log4 3)+ε) if we take for instance ε = 1. Furthermore, the
function f (n) = n2 verifies 4 f (n/3) ≤ cn2 if we take for instance
c = 1/2, so T(n) = Θ(n2).

∼
lo

g 3
n

Θ(n)

Θ(nlog3 4)

Figure 49: If T(n) = 4T(n/3) + Θ(n)
we are in the first case of the theorem:
the total work performed at each level
increases exponentially, and the work
performed on the last level dominates
everything else.

algo 32

Establishing Upper Bounds by Mathematical Induction

Here we review a way to prove that T(n) = O(f (n)) when you have
some recursive equation for T(n) but do not want to (or cannot) use
the master theorem. However, like all inductive proofs, you need to
know84 the solution (i.e., f (n)) before you can start the proof. 84 Guessing the solution is also an

option: sometimes the recurrence
equation looks like some equation you
have already solved, or some equation
that you would know how to solve,
and it seems legitimate to estimate
that the solution should be be similar.
You would then use mathematical
induction to confirm your guess.

To prove the T(n) = O(f (n)), we need to show that there exists
some constant c > 0 and some n0 ∈ N such that for values of n
larger than n0 we have T(n) ≤ c f (n).85 Note that once we have a

85 This is the definition of T(n) =
O(f (n)), as seen on page 23.

constant c that works, we can decide to use a larger c and the proof
will still work. In fact, the ability to pick a c large enough is often
necessary to complete the proof.

Ideally, we make our inductive proof as follows:
1. We write our inductive hypothesis, Hn : T(n) ≤ c f (n).
2. We show that Hn0 holds, from some n0 and c we supply.
3. We show that Hn holds for any n > n0, if we assume Hn0 , Hn0+1,

…, and Hn−1.
4. We conclude that T(n) = O(f (n)).
Sometimes we fail at step 3 and we may have to revise our definition
of f (n) before giving up.

F t f

Example: Assume we have T(n) =

Θ(1) if n = 1

T(bn/2c) + Θ(1) if n > 1
and we want to prove that T(n) = O(log n).

Our inductive hypothesis Hn is that T(n) ≤ c log2 n. Clearly we
cannot prove H1 because T(1) is a constant necessary larger than
c log2 1 = 0. However T(2) = T(1) + Θ(1) = Θ(1) is a constant
as well, so we can choose c large enough so that T(2) ≤ c log2 2 =

c, and H2 holds. Similarly, T(3) = T(2) + Θ(1) = Θ(1) is also
a constant, so clearly H3 holds if we keep c larger than these two
constants.

Now for any n ≥ 4 let us assume that H2, H3, . . . , Hn−1 holds and
let us prove Hn. By definition of T(n) we have

T(n) = T(bn/2c) + Θ(1)

Since n ≥ 4 we have bn/2c ≥ 2, so we use hypothesis Hbn/2c:

T(n) ≤ c log2

⌊n
2

⌋
+ Θ(1) ≤ c log2

n
2
+ Θ(1)

T(n) ≤ c log2 n− (c−Θ(1))

Now we argue that since we can pick c as large as we want, we can
make sure that c−Θ(1) is positive. Therefore

T(n) ≤ c log2 n

We have proved Hn, and by mathematical induction we conclude
that T(n) = O(log n).86

86 Exercise: Using the same recursive
definition of T(n), adapt this method to
demonstrate that T(n) = Ω(log n).

It would be nice if it was always that easy!

algo 33

When Mathematical Induction on Recurrence Fails

The example from the previous page is a case where the proof goes
well. This is not always the case and sometimes we have to adapt
our induction hypothesis in order to complete the proof.

Consider the recurrence

T(n) =

1 if n = 1

2T(bn/2c) + 1 if n > 1

From our experience, we guess that T(n) = O(n), so let’s try to prove
the hypothesis Hn : T(n) ≤ cn for some constant c. Clearly H1 is
true. So for any n > 1, let us assume that H1, . . . , Hn−1 hold, and use
that to prove Hn:

T(n) = 2T(bn/2c) + 1

since n > 1, we have 1 ≤ bn/2c < n and can apply Hbn/2c:

T(n) ≤ 2cbn/2c+ 1

T(n) ≤ 2cn/2 + 1

T(n) ≤ cn + 1

Unfortunately, this last equation does not imply Hn, so we cannot
conclude our inductive proof.

The trick is to realize that we are just off by a constant, i.e., some-
thing negligible in front of the O(n) bound we are trying to estab-
lish. In order to get rid of this constant, we can introduce one in our
hypothesis. Let us attempt the same proof with H′n : T(n) ≤ cn− 1.
Hypothesis H′1 still hold for a c large enough. Again, for any n > 1,
let us assume that H′1, . . . , H′n−1 hold, and use that to prove H′n:

T(n) = 2T(bn/2c) + 1

we apply H′bn/2c:

T(n) ≤ 2(cbn/2c − 1) + 1

T(n) ≤ 2cbn/2c − 1

T(n) ≤ 2cn/2− 1

T(n) ≤ cn− 1

Now, this is exactly H′n, so by mathematical induction we have
proved that T(n) ≤ cn − 1 holds for all n ≥ 1. This of course im-
plies that T(n) ≤ cn for all n ≥ 1 and hence that T(n) = O(n).

algo 34

More Examples of Complexities

Let us apply the techniques we learned so far to different algorithms
and operations on data structures. The presentation of those al-
gorithms and data structures, which you should probably already
know, is just a pretext to practice the computation of complexities.

The next sorting algorithm we study is HeapSort. It uses a
data structure called heap, which is a nearly complete binary tree (see
below) with some additional constraints.

Nearly Complete Binary Trees

A nearly complete binary tree is a binary tree in which all levels, except
possibly the last, are fully filled, and furthermore, the nodes from
the last level are filled from left to right. Figure 50 gives an example.

each level
is complete
with 2h nodes

nodes may only be missing
on the right of the last level

Figure 50: A nearly complete binary
tree has all its levels complete, except
maybe the last one where all nodes are
flush left.

4

2

7

7 9

3

4

8

4 0

0

1 2

3 4 5 6

7 8 9

4 2 8 7 3 4 0 7 9 4
0 1 2 3 4 5 6 7 8 9

Figure 51: A nearly complete binary
tree storing integers, and its representa-
tion as an array of integers.

A nearly complete binary tree with n nodes can be efficiently rep-
resented as an array of n elements, as illustrated by Figure 51: the
array is simply filled by reading the values of the tree one level after
the other, i.e., from top to bottom and from left to right. The require-
ment that a nearly complete binary tree can only have missing nodes
at the end of its last level stems from this array-based representation:
we do not want any hole in the array.

This array-based representation is very space efficient since it
does not need to store any pointer to parent and children. A node
can be referred to by its index i in the array, and the index of its
parent and children can be computed from i. Assuming the number
of nodes (i.e., the size of the array) is known to be n, we have the
following formulas87: 87 The formulas are different if array

indices start at 1 instead of 0.
LeftChild(i) = 2i + 1 if 2i + 1 < n

RightChild(i) = 2i + 2 if 2i + 2 < n

Parent(i) =
⌊

i− 1
2

⌋
if i > 0

Furthermore, if a nearly complete binary tree has n nodes, we
know it has exactly b n

2 c internal nodes and d n
2 e leaves. These leaves

are necessarily stored at positions b n
2 c to n− 1 in the array. This fact

will be used in BuildHeap88 to work on all subtrees but the leaves. 88 cf. p. 35

Heaps
9

7

7

2 4

4

3

8

4 0

0

1 2

3 4 5 6

7 8 9

9 7 8 7 4 4 0 2 4 3
0 1 2 3 4 5 6 7 8 9

Figure 52: A (max-)heap storing the
same set of values as in Fig. 51.

A max-heap is a nearly complete binary tree storing elements in an order
that satisfies the following heap constraint: the value of any node
must be greater than (or equal to) that of its children. A min-heap
can be defined similarly (each node has a value less than that of its
children), but we will only focus on max-heaps from now on.

For instance, the heap of Figure 52 was built from the nearly
complete binary tree of Figure 51 by applying the algorithm Build-
Heap.

Max-heaps have the important property that the maximum value
can always be found at its root. This can be used for sorting.

algo 35

Heapify and BuildHeap

heap heap
` r

i

heap

i

Heapify(A, i, m)

Figure 53: Pre- and post-conditions of
Heapify. The input is a node i whose
children subtrees are already known to
satisfy the heap property. In the output
the entire subtree rooted in i satisfies
the heap property. This implies that
A[i] in the output should be equal to
max(A[i], A[`], A[r]) in the input.

The Heapify function is the main building block for the Build-
Heap algorithm. Let A be an array of size m storing a nearly com-
plete binary tree. Heapify takes the index i of a node whose left
and right children are already known to be subtrees that satisfy the
heap property, and it rearranges the values of i and its children so
that the subtree rooted in i has the heap property. These conditions
are illustrated by Figure 53.

Note that if the left child ` of i satisfies the heap property, its value
A[`] is necessarily the maximum of the left subtree. Similarly, A[r]
is the maximum of the right subtree. If A[i] is already greater than
A[`] and A[r], then the subtree rooted in i already satisfies the heap
property. Otherwise, two of these three values have to be swapped:
bringing the maximum at the top, and possibly destroying the heap
property of one of the children (but this can be fixed recursively).

1

2

4

2 3

5

3 1

7

5 4

0

1 2

3 4 5 6

7 8 9 10
When running Heapify(A, 1, 11) on
the above tree, A[1] is swapped with
A[4] on line 10. 1

5

4

2 3

2

3 1

7

5 4

0

1 2

3 4 5 6

7 8 9 10
The subtree of 4 is then corrected by
calling Heapify(A, 4, 11) recursively.

1

5

4

2 3

3

2 1

7

5 4

0

1 2

3 4 5 6

7 8 9 10

Figure 54: Execution of
Heapify(A, 1, 11) on an example.
States colored in blue are roots of
subtrees with the heap property.

Heapify(A, i, m)

1 `← LeftChild(i) Θ(1)
2 r ← RightChild(i) Θ(1)
3 if ` < m and A[`] > A[i] Θ(1)
4 g← ` O(1)
5 else
6 g← i O(1)
7 if r < m and A[r] > A[g] Θ(1)
8 g← r O(1)
9 if g 6= i Θ(1)

10 A[i]↔ A[g] O(1)
11 Heapify(A, g, m) ?

Figure 54 illustrates this algorithm on an example. Using Heapify
to turn a complete binary tree into a heap is now quite easy: notice
that all leaves already satisfy the heap property, so all we need is to
call Heapify on the internal nodes, in a bottom-up way. Remem-
ber that the first leave is at position bn/2c in the array, so the last
internal node is just before.

BuildHeap(A, n)
1 for i from bn/2c − 1 down to 0: Θ(n)
2 Heapify(A, i, n) ?

Figure 55 runs BuildHeap on the nearly complete binary tree
used as example on the previous page.

Figure 55: Running BuildHeap on the
nearly complete binary tree from Fig. 51
produces the heap of Fig. 52.

4
2

7
7 9

3

4

8

4 0

4
2

7
7 9

4
3

8

4 0

4
2

9
7 7

4
3

8

4 0

4
2

9
7 7

4
3

8

4 0

4
9

7
2 7

4
3

8

4 0

9
7

7
2 4

4
3

8

4 0

algo 36

The Complexity of Heapify

Page 35 presents Heapify and BuildHeap, but does not give their
complexity.

Heapify contains different execution branches. The most efficient
scenario is obviously when g = i on line 9, because then no recursion
occurs. In this case, Heapify executes in constant time.

For the recursive case, it is instructive to consider different ways
to measure the size of the input.

x + 1 nodes

x nodes x nodes

i

Figure 56: Worst case for the recursion
of Heapify: the left subtree has
slightly more than twice the number of
nodes of the right subtree. If s = 3x+ 2,
the left subtree has 2x + 1 = (2s− 1)/3
nodes.

• Heapify(A, i, m) will only work on nodes that belong to the
subtree rooted in i. So we could use TH(s) to denote the time
complexity of Heapify on a subtree of s nodes. When Heapify
recurses into one of the two children of i, how many nodes are
left in the worst case? To answer that, look at Figure 56: because
the last level of a heap is not necessarily full, the left subtree can
actually have twice the numbers of nodes of the right one. The
left subtree can actually have up to d(2s− 1)/3e = 2s/3 + O(1)
nodes. We therefore have the following recurrence:

TH(s) ≤

Θ(1) if s = 1

TH(2s/3 + O(1)) + Θ(1) if s > 1

This is not exactly the form of the Master theorem89 because of 89 cf. p. 31

the inequality. However, we can use the Master theorem to find
that U(s) = U(2s/3 + O(1)) + Θ(1) has for solution U(s) =

Θ(log s), and from that we conclude:

TH(s) ≤ U(s) = Θ(log s) hence TH(s) = O(log s).

• Another option is to express the complexity TH(h) of Heapify
working on a subtree of height h. Each recursive call reduces the
height by one, so we have TH(h) ≤ TH(h − 1) + Θ(1) until we
handle a leaf with TH(0) = Θ(1). By iterating this definition, we
easily find that TH(h) = O(h):

TH(h) ≤ TH(h− 1) + Θ(1)

TH(h) ≤ TH(h− 2) + Θ(1) + Θ(1)
...

TH(h) ≤ TH(0) + Θ(1) + . . . + Θ(1)︸ ︷︷ ︸
h termsTH(h) ≤ (h + 1)Θ(1)

TH(h) ≤ Θ(h)

TH(h) = O(h)

Note that these two results, TH(s) = O(log s) and TH(h) = O(h),
are compatible because h = Θ(log s) for complete binary trees.90 90 Exercise: Prove that any complete

binary tree of s nodes has a height of
exactly h = blog2 sc.

We will use both expressions for TH on next page, to compute the
complexity of BuildHeap.

algo 37

The Complexity of BuildHeap

BuildHeap(A, n)
1 for i from bn/2c − 1 down to 0: Θ(n)
2 Heapify(A, i, n) ?

Having established the complexity of Heapify on page 36, we
only need to answer one question before we can give complexity
TBH(n) of running BuildHeap: ‘‘what is the cost of line 2?’’

• We can consider that in the worst case, Heapify runs on a sub-
tree of n nodes. This is the case when called with i = 0 and the
Heapify call then costs TH(n) = O(log n). It costs less in the
other iterations, but O(log n) already gives an upper bound any-
way. Since there are bn/2c iterations, the total complexity can be
expressed as follows:

TBH(n) = Θ(n)︸ ︷︷ ︸
line 1

+ bn/2cO(log n)︸ ︷︷ ︸
line 2

TBH(n) = Θ(n) + Θ(n)O(log n)

TBH(n) = O(n log n)

However, that is a crude upper bound, because we considered
that all calls to Heapify cost as much as the last one.

h

blog2 nc

Figure 57: The number of subtrees of
height h in a complete binary tree of n
nodes without missing nodes on the last
level, can be expressed as the number of
nodes at depth d = blog2 nc − h, that
is 2blog2 nc−h. This value is smaller or
equal to 2log2(n)−h = n/2h.
Now if the binary tree is nearly complete

(i.e., it has missing nodes), n/2h is
still an upper bound of the number of
subtrees with height h.
So we conclude that S(h, n) ≤ n/2h.

• In practice, Heapify is called on many small subtrees where
it has constant cost. For instance, on all subtrees of height 1,
Heapify costs TH(1) = Θ(1). A more precise evaluation of
line 2 would therefore account for the different sizes of each sub-
tree considered. Let S(h, n) be the number of subtrees of height h
in a heap of size n. We can express the complexity of BuildHeap
as:

TBH(n) = Θ(n)︸ ︷︷ ︸
line 1

+
blog nc

∑
h=1

S(h, n)TH(h)︸ ︷︷ ︸
line 2

(10)

Indeed: we have S(h, n) subtrees of height h, the call to Build-
Heap costs TH(h) for each of them, and we are running Build-
Heap on all subtrees with heights ranging from 1 (the node just
above the leaves) to blog nc (for the root91). 91 See the remark 90 on p. 36.

Finding an exact formula for S(h, n) is tricky, but we can establish
the upper bound S(h, n) ≤ n/2h as shown in Figure 57. From that
we have:
blog nc

∑
h=1

S(h, n)TH(h) ≤
blog nc

∑
h=1

nO(h)
2h = n O

(blog nc

∑
h=1

h
2h

)
= O(n)

The trick is to recognize the sum as the start of a series that con-
verges92, so it can be reduced to O(1). Plugging this in equa-

92 Start from
∞

∑
k=0

rk =
1

1− r
which can

be established for any |r| < 1 from
eq. 7 p. 12. Differentiate both sides
w.r.t. r, then multiply by r to obtain
∞

∑
k=0

krk =
r

(1− r)2 . In our case we have

r =
1
2

and
∞

∑
k=0

k
(

1
2

)k
converges to 2.

tion (10), we get:

TBH(n) = Θ(n) + O(n) = Θ(n)

A complexity that is both lower (n versus n log n) and more pre-
cise (Θ versus O) than our first attempt!

algo 38

HeapSort
9

7

7

2 4

4

3

8

4 0

After BuildHeap
0

1 2

3 4 5 6

7 8 9

9 7 8 7 4 4 0 2 4 3
0 1 2 3 4 5 6 7 8 9

3

7

7

2 4

4

9

8

4 0

After A[0]↔ A[9]

0

1 2

3 4 5 6

7 8 9

3 7 8 7 4 4 0 2 4 9
0 1 2 3 4 5 6 7 8 9

8

7

7

2 4

4

9

4

3 0

After Heapify(A, 0, 9)

0

1 2

3 4 5 6

7 8 9

8 7 4 7 4 3 0 2 4 9
0 1 2 3 4 5 6 7 8 9

4

7

7

2 8

4

9

4

3 0

After A[0]↔ A[8]

0

1 2

3 4 5 6

7 8 9

4 7 4 7 4 3 0 2 8 9
0 1 2 3 4 5 6 7 8 9

7

7

4

2 8

4

9

4

3 0

After Heapify(A, 0, 8)

0

1 2

3 4 5 6

7 8 9

7 7 4 4 4 3 0 2 8 9
0 1 2 3 4 5 6 7 8 9

2 7 4 4 4 3 0 7 8 9
7 4 4 2 4 3 0 7 8 9
0 4 4 2 4 3 7 7 8 9
4 4 4 2 0 3 7 7 8 9
3 4 4 2 0 4 7 7 8 9
4 3 4 2 0 4 7 7 8 9
0 3 4 2 4 4 7 7 8 9
4 3 0 2 4 4 7 7 8 9
2 3 0 4 4 4 7 7 8 9
3 2 0 4 4 4 7 7 8 9
0 2 3 4 4 4 7 7 8 9
2 0 3 4 4 4 7 7 8 9
0 2 3 4 4 4 7 7 8 9
0 2 3 4 4 4 7 7 8 9

Figure 58: Progression of HeapSort,
starting from the entire heap.

Sorting an array in ascending order using a max-heap is easy: once
the heap has been built, its topmost value (i.e., the first value of the
array) is the maximum. This maximum should be therefore moved
to the end of the array. If we do that with an exchange, and new
consider only the first n − 1 values to be part of the tree, we are in
the situation depicted on Figure 58: calling Heapify on the root
of this (restricted) tree is all we need to sift up its maximum value.
This can be iterated to sort the entire array: each iteration places one
new value at its correct place, and reorder the remaining heap.

HeapSort(A, n)
1 BuildHeap(A, n) Θ(n)
2 for i from n− 1 down to 1 Θ(n)
3 A[0]↔ A[i] Θ(n)
4 Heapify(A, 0, i) O(n log n)?

The complexity of the first three lines of HeapSort, should be
quite obvious: we know the cost of BuildHeap from page 37, and
line 3 is a constant-time operation repeated n− 1 times. That leaves
us with the cost of line 4.

The first call to Heapify is done on an array of size n − 1, so its
cost should be TH(n − 1) = O(log(n − 1)) = O(log n) according
to what we established on page 36. The following iterations will
call Heapify on smaller arrays, so we can still use O(log n) as an
upper bound, and claim that the sum of all the these calls will cost
(n− 1)O(log n) = O(n log n).

It would be legitimate to ask whether we could get a better com-
plexity bound by being more precise when summing the costs of the
different calls to Heapify like we did for BuildHeap on page 37.
Here the total work performed by all iterations of line 4 is

n−1

∑
i=1

TH(i) =
n−1

∑
i=1

O(log i) = O

(
n−1

∑
i=1

log i

)
= O

(
log

n−1

∏
i=1

i

)
= O

(
log((n− 1)!)

)
(11)

Stirling’s formula is a powerful tool to simplify expressions involv-
ing factorials, if you can remember it. We have

n! ∼
√

2πn
(n

e

)n
hence log2(n!) ∼ n log2 n.

(For another way to obtain the equivalence on the right, see page 14.)
We can therefore return to equation (11) and simplify it:

n−1

∑
i=1

TH(i) = O
(
(n− 1) log(n− 1)

)
= O(n log n)

Unfortunately, this result is not better than our original approxima-
tion. We conclude that HeapSort(A, n) runs in O(n log n).

Can you explain the fundamental difference between the loops
of BuildHeap and HeapSort? Why is one O(n) and the other
O(n log n)?

algo 39

Partition
· · · unsorted · · ·

0 ` r n

· · · unsorted unsorted · · ·

0 ` p r n

≤

p← Partition(A, `, r)

Figure 59: Overview of the Partition
algorithm. The range A[`..r − 1]
is reordered so that any value in
A[`..p− 1] is less than or equal to any
value in A[p..r− 1]. The value p should
be such that ` < p < r, ensuring that
each part is non-empty. Note that the
two parts may have different lengths.

The Partition algorithm is a building block for QuickSort. Par-
tit ion reorders a given range of elements in an array, such that all
the elements in the left-hand side of the range are smaller than those
in the right-hand side as pictured by Figure 59. The resulting range
does not need to be sorted.93

93 Sorting A[`..r− 1] would be one way
to implement Partition(A, `, r), but it
would be less efficient.

One way to implement Partition is to choose a value, let’s say
x ← A[`] and use it as a threshold to decide whether an element
A[v] can belong to the left-hand part (if A[v] ≤ x) or to the right-
hand part (if A[v] ≥ x).94 The following implementation of the

94 Note that elements equal to x can go
to either side; this is on purpose.

reordering is often described as the ‘‘collapse the walls’’ technique.
The walls are in fact two indices i and j starting at both ends of the
range, and moving towards each other, exchanging values along the
way.

Partition(A, `, r)
1 x ← A[`] Θ(1)
2 i← `− 1; j← r Θ(1)
3 repeat forever O(n)

// find a value that can go to the right-hand side
Θ(n)

4 do i← i + 1 until A[i] ≥ x
// find a value that can go to the left-hand side

5 do j← j− 1 until A[j] ≤ x
// swap the two values unless the walls collapsed

6 if j ≤ i O(n)
7 return i + (i = `) Θ(1)
8 A[i]↔ A[j] O(n)

4 2 8 7 3 4 0 7 9 4

4 2 8 7 3 4 0 7 9 4

4 2 8 7 3 4 0 7 9 4

4 2 0 7 3 4 8 7 9 4

4 2 0 4 3 7 8 7 9 4

` r

4 xi j

i j

i j

i j

i
j

Figure 60: Execution of Partition
on an example. In this case, the index
returned is i, and the algorithm has (by
chance!) reordered the range in two
equal partitions.

The ‘‘repeat forever’’ loop might look daunting, but since lines 4
and 5 necessarily update i and j at each iteration of the main loop, it
is guaranteed that eventually j ≤ i and the algorithm will terminate.

What is less obvious is that there are exactly two ways in which
the algorithm may terminate. Either i = j (in this case A[i] = x), or
i = j + 1 as in Figure 60. It is not possible for i to be larger than j + 1,
because all the values to the left of i are less than or equal to x, so the
loop decrementing j will stop as soon as it passes i.

The algorithm assumes that the range contains at least two values
(r − l ≥ 2). To argue that the returned value p satisfies ` < p < r,
consider what it would take for this to be violated: To have p = `,
line 4 should be executed only once, which means that line 5 will
execute until j = i = `. However, in this case line 7 will return i + 1
so not `.
Finally, the Θ(n) complexity of Partition should be obvious after
we realize that because of the ‘‘collapsing walls’’ strategy, the sum of
the executions of lines 4 and 5 is at least n + 1 (if we end with i = j)
and at most n + 2 (if we end with i = j + 1).

algo 40

QuickSort

QuickSort consists in recursively calling Partition on the two
parts created by Partition, until we reach an array of length 1 (that
does not need to be sorted).

QuickSort(A, `, r) TQS(1) TQS(n) for n = r− ` > 1
1 if r− ` > 1 Θ(1) Θ(1)
2 p← Partition(A, `, r) Θ(n)
3 QuickSort(A, `, p) TQS(L)? for L = p− `

4 QuickSort(A, p, r) TQS(n− L)?

4 2 8 7 3 4 0 7 9 4

4 2 0 4 3 7 8 7 9 4

3 2 0 4 4 7 8 7 9 4

0 2 3 4 4 7 8 7 9 4

0 2 3 4 4 7 8 7 9 4

0 2 3 4 4 7 8 7 9 4

0 2 3 4 4 4 7 8 9 7

0 2 3 4 4 4 7 8 9 7

0 2 3 4 4 4 7 7 9 8

0 2 3 4 4 4 7 7 8 9

(`, r)

(0, 10)

(0, 5)

(0, 4)

(0, 2)

(2, 4)

(5, 10)

(5, 7)

(7, 10)

(8, 10)

Figure 61: Effect of the successive
calls to Partition(A, `, r) during the
recursion of QuickSort(A, 0, 10). The
pairs displayed on the side give the
value of ` and r passed to Partition.

Figure 61 shows the effects of the different calls to Partition
occurring while sorting an example array with QuickSort.

The proof that QuickSort actually sorts the array can be done
by induction on the length of the considered range. The induction
hypothesis Hn is ‘‘for any range [`..r− 1] of length r− ` = n, calling
QuickSort(A, `, r) will sort all the elements in A[`..r− 1]’’.

Clearly H1 is true, because a range of length 1 is already sorted
and QuickSort does not modify the array in this case. Consider
some arbitrary n > 1, and assume that Hi is true for all i < n. Run-
ning QuickSort on a range of length n > 1 will execute lines 2–4:
• The result of line 2 is that all values in the range A[`..p − 1] are

smaller than all values in the range A[p..r− 1].
• Furthermore, we have ` < p < r, which implies that the two

ranges [`..p− 1] and [p..r− 1] have lengths smaller than n and by
hypothesis we can therefore state that after running lines 3 and 4,
the values in A[`..p− 1] and A[p..r− 1] are sorted.

Combining these two points, it follows that A[`..r− 1] is sorted after
executing lines 2–4.

Evaluating the complexity of QuickSort is less easy, because the
recursive calls on lines 3 and 4 are not necessarily done on ranges
of equal length. The Partition function could return any p that
satisfies ` < p < r. So if the size of the input range is n = r− `, then
after calling Partition, the left part may have a length L = p− `

anywhere between 1 and n − 1, and the right part would have the
remaining length n− L (Fig. 62).

` p r

≤

L n− L

Figure 62: Let us assume that Parti-
t ion always puts L elements in the left
part, and n − L elements in the right
one.

It would therefore be tempting to express the complexity as the
solution of

TQS(n) =

Θ(1) if n = 1

Θ(n) + TQS(L) + TQS(n− L) if n > 1

Unfortunately that is incorrect, because the above assumes that L
would have the same value in every recursive call: i.e., Partition
would always produce a left part of size L. Clearly that is not true.
However, solving this equation can give us some clues about the
possible behaviors of QuickSort.

algo 41

Worst and Best Cases for QuickSort

Page 40 ended with a recursive expression of the complexity TQS(n)
of sorting an array of size n, but that equation assumed that the
Partition always created a left part of length L. Let us evaluate
scenarios with different values of L.

• The case where L is always equal to 1 occurs when running
QuickSort on a sorted array. In this case TQS(L) = Θ(1), and
the recursive equation can be simplified to

TQS(n) =

Θ(1) if n = 1

Θ(n) + TQS(n− 1) if n > 1

Solving TQS(n) = Θ(n) + TQS(n− 1) iteratively95, we find that

95 Be careful when doing this type of
iterative computations. It would be
tempting to simplify Θ(n) + Θ(n− 1)
as Θ(n) (this is true), then simplify
Θ(n) + Θ(n− 2) as Θ(n) (this is true as
well), and continue until we obtain that
TQS(n) = Θ(n) (which is incorrect).
What did we do wrong? The number
of terms we summed is not constant:
we can only perform these reductions a
constant number of times.
If you are unsure, it is better to

replace Θ(n) by some representative
function of the class, like cn, and solve
F(n) = cn + F(n− 1) instead. Then you
have TQS(n) = Θ(F(n))

TQS(n) = Θ(n) + TQS(n− 1)

= Θ(n) + Θ(n− 1) + TQS(n− 2)

= Θ(n) + Θ(n− 1) + Θ(n− 2) + TQS(n− 3)

= Θ(n) + Θ(n− 1) + Θ(n− 2) + · · ·+ Θ(1)

=
n

∑
i=1

Θ(i) = Θ

(
n

∑
i=1

i

)
= Θ

(
n(n + 1)

2

)
= Θ(n2)

So QuickSort needs Θ(n2) operations to sort a sorted array...96 96 This is bad, and it also implies that
this implementation of QuickSort
behaves badly for ‘‘nearly sorted’’
arrays. We discuss some mitigating
techniques on page 43.

Note that the result is the same if L is replaced by any constant.

• Another interesting case would be when L = bn/2c, i.e., when
Partition always cuts the range in its middle. Then we have

TQS(n) = Θ(n) + TQS(bn/2c) + TQS(dn/2e).

This is the same equation as for MergeSort (page 28), so we
know the solution is TQS(n) = Θ(n log n).

• What if L = n/10? For this 10%-90% scenario the equation is

TQS(n) = Θ(n) + TQS(bn/10c) + TQS(d9n/10e).

n

n
10

n
100

1

9n
100

9n
10

9n
100

81n
100

(9
10

)log10 n n

1

lo
g 10

n

lo
g 10

/
9

n

1
1

Figure 63: Shape of the tree of the
recursive calls to QuickSort in a
scenario where the Partition always
makes a 10%-90% split.

Figure 63 shows the shape of the recursion tree: each node is la-
beled by the length of the array passed to Partition. The short-
est branch of the tree is the left one, where the range is always
divided by 10: the height of this branch is log10 n. The longest
branch is the right one, with height log10/9 n since the range is
(slowly) divided by 10/9 at each recursive call. The work per-
formed by Partition is proportional to the value displayed on
each node of this tree, therefore the total cost of QuickSort is
proportional to the sum of all the nodes of this tree. The sum of
each line of the first log10 n lines if this tree is necessarily n, so
these sum to n log10 n. But the algorithm processes more than
that. The total for each remaining line is less than n, so the sum of
the whole tree is less than n log10/9 n. We therefore have

Θ(n log10 n) ≤ TQS(n) ≤ Θ(n log10/9 n) hence TQS(n) = Θ(n log n).

The same result holds if L = n/10000 or any other ratio.97

97 The difference between the bad
cases and the good cases discussed on
this page is whether L is constant or
whether it is proportional to n. The
actual constant or ratio does not affect
the resulting complexity class.

algo 42

Average Complexity of QuickSort

Let us start again from the equation98 98 The fact that TQS(1) = Θ(1) is
implicit here, but it implies that later
down the page we also have F(1) = c
and Y(1) = c.

TQS(n) = Θ(n) + TQS(L) + TQS(n− L).

On page 41, we considered some arbitrary (but fixed) expressions
for L to establish the complexity of QuickSort on some particular
scenarios. However, in practice, L may take a different value in each
recursive call. All we know is that 0 < L < n because Partition
guarantees that the left and right sides may not be empty.

To derive an average complexity, assume that L is a random vari-
able taking its value uniformly in {1, 2, ..., n− 1}. We can therefore
compute T̂QS, the average complexity of QuickSort by averaging
the complexity we could obtain for each of these n − 1 different
values, recursively:

T̂QS(n) =
1

n− 1

n−1

∑
L=1

(
Θ(n) + T̂QS(L) + T̂QS(n− L)

)
T̂QS(n) = Θ(n) +

1
n− 1

(
n−1

∑
L=1

T̂QS(L) +
n−1

∑
L=1

T̂QS(n− L)

)

T̂QS(n) = Θ(n) +
2

n− 1

n−1

∑
L=1

T̂QS(L)

To avoid any errors99, let’s replace Θ(n) by some representative 99 cf. remark 95 on p. 41

function cn. The new function F(n) is such that T̂QS(n) = Θ(F(n)):

F(n) = cn +
2

n− 1

n−1

∑
L=1

F(L)

To get rid of the sum, we first multiply both sides by n− 1 to get rid
of the non-constant factor in front of the sum, and then subtract the
same expression for F(n− 1):

(n− 1)F(n) = (n− 1)cn + 2
n−1

∑
L=1

F(L)

(n− 2)F(n− 1) = (n− 2)c(n− 1) + 2
n−2

∑
L=1

F(L)

(n− 1)F(n)− (n− 2)F(n− 1) = 2c(n− 1) + 2F(n− 1)

(n− 1)F(n) = 2c(n− 1) + nF(n− 1)

Let’s divide both sides by n(n− 1) and then set Y(n) = F(n)/n:

F(n)
n

=
2c
n

+
F(n− 1)

n− 1

Y(n) =
2c
n

+ Y(n− 1) = 2c
n

∑
i=1

1
i

From this harmonic series100, we conclude that Y(n) = Θ(log n),

100 The fact that ∑n
i=1

1
i = Θ(log n)

can be derived from Euler’s formula
(∑n

i=1
1
i = ln n + γ + o(1)), or easily

proven by bounding the sum with
integrals as done on page 14:∫ n+1

2

1
i

di ≤
n

∑
i=2

1
i
≤
∫ n

1

1
i

di

ln(n + 1)− ln(2) ≤
n

∑
i=2

1
i
≤ ln(n)

Θ(log n) ≤
n

∑
i=2

1
i
≤ Θ(log n)

Θ(log n) ≤
n

∑
i=1

1
i
≤ Θ(log n)

hence F(n) = Θ(n log n). The average complexity of QuickSort is
therefore T̂QS = Θ(n log n).

algo 43

QuickSort Optimizations

Typical QuickSort optimizations include:

• Selecting a different pivot value in the Partition procedure from
page 39. The ideal value would be the median of the range as it
would ensure equal size for both sides. However, the median is
not really easy to compute without sorting the range already.101 101 It is possible to find the median of

an array with only Θ(n) operations
using an algorithm sometimes called
‘‘median of medians’’. However this
would be very inconvenient here:
firstly the constant hidden behind
the Θ(n) notation is quite large, and
secondly this algorithm is itself based
on a recursive procedure similar to
QuickSort.

The usual strategy is to pick the median of the three values A[`],
A[r − 1] and A[b(r + `)/2c]. Line 1 of Partition is replaced
by x ← MedianOf3(A[`], A[r − 1], A[b(r + `)/2c]). With this
change, QuickSort deals nicely with nearly-sorted arrays.102

102 Input arrays that trigger the worst-
case Θ(n2) complexity still exist (see
Fig. 64 page 44), but are harder to
come by.

• The last recursive call to QuickSort is a tail call, so it can be
optimized as a loop. Compare these equivalent implementations:
QuickSort(A, `, r)
1 if r− ` > 1
2 p← Partition(A, `, r)
3 QuickSort(A, `, p)
4 QuickSort(A, p, r)

QuickSort(A, `, r)
1 while r− ` > 1
2 p← Partition(A, `, r)
3 QuickSort(A, `, p)
4 `← p

Any decent compiler would already do this kind of tail call elimi-
nation automatically: this saves memory, because the value of the
local variables have to be saved on the stack before each call.
However, what the compiler cannot guess is that the order of
the two recursive calls to QuickSort does not matter: we can
actually choose which of the two calls should be turned into a loop.
Here, we want to always recurse on the smaller part, to keep the
recursion as shallow as possible.

QuickSort(A, `, r)
1 while r− ` > 1
2 p← Partition(A, `, r)
3 if p− ` ≤ r− p
4 QuickSort(A, `, p)
5 `← p
6 else
7 QuickSort(A, p, r)
8 r ← p

While this does not change the time complexity of the algorithm,
it changes its memory complexity103. Indeed the memory com- 103 I.e., the number of additional mem-

ory an algorithm requires to process its
input — this includes the stack in case
of recursive algorithms.

plexity was O(n) in our first implementation of QuickSort
because the recursion could be n-deep in the worst case; it is now
O(log n) because there is no way to recurse on an sub-array larger
than n/2.

• Use InsertionSort when the array has a small length (like 10
values — the precise bound has to be found empirically). Even
if InsertionSort has O(n2) complexity, it usually performs a
lot better than QuickSort for small-sized input, because it does
not have all the overhead of running Partition and making
recursive calls.

algo 44

IntroSort, or How to Avoid QuickSort’s Worst Case 0 8 2 10 4 12 6 1 3 5 7 9 11 13

0 1 2 10 4 12 6 8 3 5 7 9 11 13

0 1 2 3 4 12 6 8 10 5 7 9 11 13

0 1 2 3 4 5 6 8 10 12 7 9 11 13

0 1 2 3 4 5 6 7 10 12 8 9 11 13

Figure 64: A worst case for Quick-
Sort when the pivot is the median of
A[`], A[r− 1] and A[b(r + `)/2c].

Even with the usual optimizations described on page 43, it is pos-
sible to construct an input that triggers QuickSort’s worst case.
Figure 64 shows an example where the pivot selected by Medi-
anOf3 is the second smallest value, so that Partition does a sin-
gle swap and creates a left part with L = 2 elements, and a right
part with n − 2 elements. The left part can be sorted recursively in
constant time, but when sorting the right part recursively, a similar
(2, n − 2) partition is produced again. This unfortunate situation
occurs until half of the array is sorted: if we sum just the costs of
running Partition on the largest parts up to this point we have
Θ(n) + Θ(n− 2) + Θ(n− 4) + · · ·+ Θ(n/2) = Θ(n2), so the worst
case of QuickSort is necessarily reached. Any input where the re-
cursion depth104 of QuickSort is linear will lead to the worst case 104 This should be understood without

the tail call optimization discussed on
page 43

complexity of Θ(n2). On the contrary, if the recursion depth is in
O(log n), then we obtain a best case complexity of Θ(n log n).

An easy way to avoid the worst case of QuickSort is to not use
QuickSort, and resort instead to HeapSort or MergeSort, that
ensure a Θ(n log n) worst case. However practice shows that Quick-
Sort’s is much faster on the average, so it is usually preferred.

The idea of IntroSort105 is to execute a variant of QuickSort 105 IntroSort was invented by David
Musser, one of the original authors
(with Alexander Stepanov) of the C++
Standard Template Library (STL). It
is now the default sorting algorithm
behind most (if not all) std::sort()
implementations, because the STL
requires std::sort() to run in
Θ(n log n).

that will keep track of the depth of the recursive calls in order to en-
sure it is sub-linear. If that depths exceeds cblog nc for some constant
c, then IntroSort stops the recursion and sorts the current sub-
array with HeapSort instead. Doing so ensure that the entire array
will be sorted in Θ(n log n), either by the variant of QuickSort, or
with the help of HeapSort in the difficult cases. The constant c can
be chosen arbitrarily, but it should not be too small to give Quick-
Sort a chance to finish and limit the number of calls to HeapSort.
In practice c = 2 is often used.

The pseudo-code below includes the tail call optimization from
page 43. It could be combined with InsertionSort as well.106 106 Here we assume that

HeapSort(A, `, r) executes Heap-
Sort on the sub-array A[`..r− 1]. This
does not exactly matches to prototype
of page 38.

IntroSort(A, `, r)
1 IntroSortRec(A, `, r, 2blog(r− `)c)

IntroSortRec(A, `, r, depth_limit)
1 while r− ` > 1
2 if depth_limit = 0
3 HeapSort(A, `, r)
4 return
5 else
6 depth_limit← depth_limit− 1
7 p← Partition(A, `, r)
8 if p− ` ≤ r− p
9 IntroSortRec(A, `, p, depth_limit)

10 `← p
11 else
12 IntroSortRec(A, p, r, depth_limit)
13 r ← p

algo 45

QuickSelect

Given an array A of n values, the value of rank k is the kth smallest
value of A. An algorithm that takes A and k as input and returns the
rank-k value is called a selection algorithm.107 In what follows, we 107 One easy (and inefficient) way to

build a selection algorithm is to first sort
A in increasing order, and then pick
its kth value. What sorting algorithm
would you use, and what would be the
complexity of that selection algorithm?

assume 0 ≤ k < n. The value of rank k = 0 is the minimal value, and
the value of rank n− 1 is the maximal value.

QuickSelect can be seen as a modification of QuickSort to
implement a selection without sorting the entire array. The trick is
that after Partition has run, we know (from the sizes of the two
parts) in which part we need to search our value recursively.

QuickSelect(A, n, k)
1 return QuickSelectRec(A, 0, n, k)
QuickSelectRec(A, `, r, k) T(1) T(n)
1 if r− ` = 1 then return A[`] Θ(1) Θ(1)
2 p← Partition(A, `, r) Θ(n)
3 L← p− ` Θ(1)
4 if k < L Θ(1)
5 then return QuickSelectRec(A, `, p, k) T(L)
6 else return QuickSelectRec(A, p, r, k− L) T(n− L)

4 2 8 7 3 4 0 7 9 4

4 2 0 4 3 7 8 7 9 4

4 2 0 4 3 4 7 8 9 7

4 2 0 4 3 4 7 8 9 7

QuickSelectRec(A, 0, 10, 6)

QuickSelectRec(A, 5, 10, 1)

QuickSelectRec(A, 5, 7, 1)

QuickSelectRec(A, 6, 7, 0) = 7
Figure 65: An example execution of
QuickSelect(A, 10, 6). The figure
shows the state of the array before the
next recursive call to QuickSelec-
tRec.

Figure 65 shows an example.
The complexity differs from QuickSort, because at most one of

the two possible recursive calls on lines 5–6 may be executed. In the
worst case, we have to assume that Partition performed poorly
(L = 1), and that we always have to recurse into the largest part of
n− 1 elements. This gives us the following recursive equation:

T(1) = Θ(1),

T(n) = T(n− 1) + Θ(n) for n > 1

We conclude that the worst case complexity is T(n) = Θ(n2).
Let us now consider a case where Partition behaves ideally,

always splitting the array of n elements in two equal halves. The
equation becomes:

T(1) = Θ(1),

T(n) = T(n/2) + Θ(n) for n > 1

The Master Theorem (p. 31) tells us the solution to this equation
is T(n) = Θ(n). While this is not the best case scenario108, this 108 Exercise: Devise a scenario where

calling QuickSelect on an array of
size n runs in Θ(1).

seems like a favorable case. If we imagine a similar scenario where
we recurse into 90% of the array (or any other ratio), the complexity
will remain linear.

On page 46 we will prove that the average complexity of Quick-
Select is actually Θ(n), despite the quadratic worst case.109 109 Exercise: Using the idea presented

page 44, write another selection algo-
rithm, called IntroSelect, with a
worst case of Θ(n log n).

Do you believe it is possible to write a selection algorithm that
would always run in Θ(n)? Jump to page 47 for an answer.

algo 46

Average complexity of QuickSelect

To study the average complexity T̂(n) for QuickSelect, we con-
sider (as we did on page 42) that the value of L can be anything
between 1 and n− 1 with equal probability, and we average over all
these possibilities. The problem in our case, is that we do not know
if the algorithm will recurse in a part of size L or n − L, so let us
compute an upper bound of T̂ by assuming we recurse into the largest
of these two parts.

T̂(1) = Θ(1),

T̂(n) ≤ 1
n− 1

n−1

∑
i=1

T̂(max(i, n− i)) + Θ(n) if n > 1

We can simplify this a bit because max(i, n− i) =

i if i ≥ dn/2e
n− i if i ≤ bn/2c

If n is even, all the terms between T̂(dn/2e) and T̂(n) appear twice
in the sum. If n is even, T̂(bn/2c) additionally occurs once, but it is
OK to count it twice since we are establishing an upper bound.

T̂(n) ≤ 2
n− 1

n−1

∑
i=bn/2c

T̂(i) + Θ(n)

It is not clear how to simplify this, however from the last scenario of
page 45, it seems likely that T̂(n) = Θ(n). Since we are working on
an upper bound, let us prove that T̂(n) = O(n) by induction110. 110 cf. pp. 32–33

Our hypothesis H(n) is that T̂(n) ≤ cn from some c we can pick
arbitrarily large. Clearly H(1) is true, because T̂(n) = Θ(1), so we
can find some c larger than this Θ(1) constant. Now let us assume
that H(i) holds for 1 ≤ i < n and let us establish H(n):111 111 In the first line, the sum over ci can

be removed by showing that

n−1

∑
i=bn/2c

i ≤ 3
8

n2.

n−1

∑
i=bn/2c

i =
(n− 1 + bn/2c)(n− bn/2c)

2

=
n2 − n + bn/2c − bn/2c2

2

if n is even:

=
4n2 − 4n + 2n− n2

8

=
3n2 − 2n

8
≤ 3n2

8

if n is odd:

=
4n2 − 4n + 2(n− 1)− (n− 1)2

8

=
3n2 − 3

8
≤ 3n2

8

T(n) ≤ 2
n− 1

n−1

∑
i=bn/2c

ci + Θ(n) ≤ 2c
n− 1

3n2

8
+ Θ(n)

T(n) ≤ 3cn(n− 1) + 3cn
4(n− 1)

+ Θ(n) ≤ 3cn
4

+
3c(n− 1) + 3c

4(n− 1)
+ Θ(n)

T(n) ≤ cn− cn
4

+
3c
4

+
3c

4(n− 1)
+ Θ(n) ≤ cn +

(
Θ(n)− cn

4

)
We can take c large enough so that cn/4 dominates Θ(n)

T(n) ≤ cn

Conclusion: H(n) holds for all n ≥ 1 and therefore T̂(n) = O(n).
However since QuickSelect has to call Partition for n > 1, it

necessarily performs at least Θ(n) operations, so we can claim that
its average complexity is in fact T̂(n) = Θ(n).

algo 47

Linear Selection

While QuickSelect has an average complexity of Θ(n), it still has
a Θ(n2) worst case when we arrange the data so that Partition
behaves badly (for instance using an arrangement similar to Fig. 64
on page 44). However if we could make sure that Partition would
always allow us to eliminate a number of values that is a fraction of
n (as opposed to a constant), then the selection would be linear.

This is actually the key of the LinearSelect algorithm112: at any 112 This algorithm is also known as
‘‘median of medians’’ for reasons that
will be soon obvious.

step of the recursion, it removes a quarter of the values. LinearSe-
lect can be seen as a variant of QuickSelect where Partition is
changed to select its pivot as the median of medians (steps 1–3).

LinearSelect(A, n, k) T(n)
1 consider the n input values as d n

5 e groups of 5 val-
ues (with maybe the last group having less than 5
values) and compute the median of each group

Θ(n)

2 compute the median x of all those d n
5 emedians T(d n

5 e)
3 use x as the pivot of Partition (i.e., replacing line 1
of the algorithm on page 39) to reorganize A

Θ(n)

4 recursively call LinearSelect on one of the two
parts (depending on k), as done in QuickSelect.

≤ T(3n
4)

x

Figure 66: The circles represent an
array of 34 values organized in 7
groups (6 groups of 5 values, and
one group of 4 values). We interpret
u v as meaning u ≤ v. Inside
each group (i.e., each column), values
have been moved so that the median is
on the center line, values above it are
greater, and values below it are lesser.
Similarly, columns have been ordered
such that the median x of all medians
has three greater medians to its left,
and three lesser medians to its right.
We can see that there are more than

n/4 values that are greater than x (the
top left quarter), and more than n/4
values that are lesser than x. Therefore,
if x is used as a pivot in Partition,
both parts are guaranteed to have more
than n/4 values.

Computing the median of 5 values can be done in constant time,
so repeating this operation d n

5 e times in step 1 requires Θ(n) op-
erations. Computing the median of these d n

5 emedians however
cannot be done in constant time since the number of values de-
pends on n; however it correspond to the value of rank bd n

5 e/2c
among these d n

5 e values, so we can compute it by calling LinearS-
elect recursively on an array of size d n

5 e. Hence, assuming that
running LinearSelect on n values takes T(n) operations, then step
2 needs T(d n

5 e) operations. Calling Partition costs Θ(n), as seen
on page 39, but thanks to our pivot, we are sure that at each of the
two parts contains at least 25% of the array (see Fig. 66), so in the
worst case, the recursive call of step 4 will cost T(3n

4). Thus, we have:

T(1) = Θ(1)

T(n) ≤ Θ(n) + T
(⌈n

5

⌉)
+ T

(3n
4

)
Let us prove the following induction hypothesis113, Hn: ‘‘T(n) ≤ cn’’. 113 See pp. 32–33 for the technique.

One way to guess a probable solution
for this equation is to consider that
T(d n

5 e) seems much smaller than
T(3n

4). So as a first guess, we neglect
it and solve T(n) ≤ Θ(n) + T(3n

4). In
this simplified case, we find using the
master theorem that T(n) = O(n).
Then we use induction to verify if this
solution is still correct for the complete
problem.

Clearly H1 holds, because T(1) = Θ(1) and we can find c large
enough to dominate that Θ(1). Let us assume that H1, H2, …, Hn−1

hold, and inject this knowledge into our recursive inequality:

T(n) ≤ Θ(n) + c
⌈n

5

⌉
+

3cn
4
≤ Θ(n) +

c(n + 4)
5

+
3cn

4

T(n) ≤ Θ(n) +
19cn

20
+

4c
3

= cn +

(
Θ(n) +

4c
3
− cn

20

)
We can chose c large enough so that cn/20 dominates Θ(n) + 4c

3 .
Then T(n) ≤ cn, which means that Hn holds for any n ≥ 1, and this
allows us to conclude that T(n) = O(n).

We can strengthen this result to T(n) = Θ(n) because of step 3.

algo 48

Space Complexity

As mentioned on page 18 the space complexity of an algorithm,
often noted S(n), is the amount of additional memory required to
process an input of size n.

The space complexity can be computed using the same mathe-
matical tools we used for computing time complexities. We simply
sum the sizes of all local variables, and if there are function calls
(even recursive calls), we add the maximum space complexities of
all these calls.

For a simple iterative algorithm like SelectionSort (p. 19) or
InsertionSort (p. 20), there is only a couple of local variables
used to store values or indices, so S(n) = Θ(1).114 114 Here, and in all our examples, we

are making the practical assumption
that values and indices are integers
stored in a fixed amount of memory.
Some people who are interested in
bit-level complexity may have different
expectation. For instance they could
say that if we want to work with
array that are arbitrarily large, we
need Θ(log n) bits to store an index.
Similarly, if we want be able to store
n distinct values in the input array, it
needs Θ(n log n) bits.

A recursive algorithm like BinarySearch (p. 22) has to store
one local variable m per recursive call. Its space complexity is the
solution of S(n) ≤ Θ(1) + S(n/2) which is S(n) = O(log n). How-
ever if we account for the fact that BinarySearch is tail recursive
and assume the compiler will perform tail calls elimination, changing
the recursion into a simple loop, then the space complexity drops to
Θ(1).

Similarly, the space complexity of HeapSort (p. 38) satisfies
S(n) ≤ S(2n/3 + O(1)) + Θ(1), and this can be solved as for TH(n)
on page 36: S(n) = O(log n).

For an algorithm like MergeSort (p. 28), we can assume that
the array B of size Θ(n) used in Merge (p. 27) is allocated once
before the recursion, and the space requirement of the recursion is
Θ(log n). We conclude that S(n) = Θ(n).

Finally, the space complexity of QuickSort depends on how it
has been implemented. If we use the implementation described on
pages 39–40, each call to QuickSort requires Θ(1) local variables
(call to Partition included) but we can have n− 1 recursive calls
in the worst case. Therefore S(n) = O(n). However if the trick of
page 43 is used to only recurse on the smaller of the to sides of the
partition, then the recursive depth is at most log2 n and the space
complexity drops to S(n) = O(log n).

In-place Algorithms

An algorithm is in-place if its space complexity belong to O(log n). In
other words, the additional memory it requires to process an input
of size n is at most logarithmic in n.

This definition is a bit more practical than what we would intu-
itively allow: limiting the memory consumption to O(log n) instead
of O(1) allows some recursive algorithms like HeapSort to qualify
as in-place while still disallowing algorithms that would use recur-
sion to allocate enough local variables to duplicate the input on the
stack.

algo 49

More Sort-Related Topics

Stable Sorting Techniques

While we have illustrated all sorting algorithms over arrays of in-
tegers, in real-life it is often the case that we want to sort records of
values according to some key. The only change required to the algo-
rithms is that instead of comparing array elements (A[i] < A[j]) we
compare some fields of these elements (e.g., A[i].grade < A[j].grade).
Let call this field the sort key.

input

name grade

Robert 10
William 15
James 10
John 5
Michael 5

output 1

name grade

John 5
Michael 5
Robert 10
James 10
William 15

output 2

name grade

Michael 5
John 5
Robert 10
James 10
William 15

output 3

name grade

John 5
Michael 5
James 10
Robert 10
William 15

output 4

name grade

Michael 5
John 5
James 10
Robert 10
William 15

Figure 67: A table listing students
and their grades. Sorting this table
in ascending-grade order may return
any of the four displayed outputs.
For instance SelectionSort pro-
duces output 3, InsertionSort and
MergeSort both produce output 1,
HeapSort produces output 4, and the
output of QuickSort depends on how
the pivot is selected in Partition.

A sorting algorithm is stable if it preserves the order of elements
with equal keys. An unstable sorting algorithm may turn the input of
Fig 67 into any of the four possible output. A stable sort will neces-
sarily produce output 1: John and Michael have equal grade so their
relative order has to be preserved; likewise for Robert and James.

The algorithms InsertionSort and MergeSort, as presented
on pages 20 and 27–28 are stable.115 The following sorts are unsta- 115 However some very subtle changes

to these algorithms will lose the stable
property. In InsertionSort, change
A[i] > key into A[i] ≥ key and the
algorithm will still sort the array, but in
an unstable way. Changing A[`] ≤ A[r]
into A[`] < A[r] in Merge will have a
similar effect on MergeSort.

ble: SelectionSort, HeapSort, QuickSort.
Stable algorithms are mostly useful when records are sorted mul-

tiple times, one key at a time. For instance to obtain output 3 of
Fig 67, where people with equal grades are sorted alphabetically, we
could proceed in two steps as illustrated by Fig. 68.

name grade

Robert 10
William 15
James 10
John 5
Michael 5

(1)−→

name grade

James 10
John 5
Michael 5
Robert 10
William 15

(2)−→

name grade

John 5
Michael 5
James 10
Robert 10
William 15

Figure 68: (1) Sort by names, then
(2) use a stable sort to order by grades.
In this case, we would get the same
output using a single sorting procedure
by modifying the comparison function
to order by grades and then by names
in case of equal grades, however there
are situations (e.g., using a cheap
spreadsheet) where we have less
control on the comparison function.

Finally, we can turn any unstable sort into a stable one by append-
ing the input order to the key (Fig. 69), or equivalently, by adding a
new column with the input order and using it for tie breaking.

Figure 69: Making any sort stable:
(1) modify the key to include the input
order, (2) sort against the new key,
(3) revert to old keys.

name grade

Robert 10
William 15
James 10
John 5
Michael 5

(1)−→

name grade’

Robert 1001
William 1502
James 1003
John 504
Michael 505

(2)−→

name grade’

John 504
Michael 505
Robert 1001
James 1003
William 1502

(3)−→

name grade

John 5
Michael 5
Robert 10
James 10
William 15

algo 50

Further Reading

We recommend the following books (ordered by relevance):

• Introduction to Algorithms (Third Edition) by Thomas H. Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2009.

This book covers most of the topics touched in our lecture. Focus
on chapters: 1–4, 6–13, and 15. This books also has chapters on
graphs that intersect with the lecture on graph theory you will get
next semester.

• Concrete Mathematics: A Foundation for Computer Science (Sec-
ond Edition) by Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Addison-Wesley, 1994.

An introduction to mathematical tools useful to the computer
scientist, and presented very nicely.

• Advanced Data Structures by Peter Brass. Cambridge University
Press, 2008.

This book presents a wide range of data structures. It is well
illustrated, and it gives actual C code for implementing each data
structure.

• Analysis of Algorithms (Second Edition) by Robert Sedgewick and
Philippe Flajolet. Addison-Weysley, 2013.

This book focuses on the mathematical tools needed for studying
the complexity of algorithm, but it goes very fast into powerful
techniques (such as generating functions) that are beyond the
scope of the current lecture. The first two chapters contains mate-
rial discussed in this lecture. In particular, our illustration of the
master theorem (page 31) is inspired from this book.

	Mathematical Background
	Computing Complexities for Algorithms
	More Examples of Complexities
	More Sort-Related Topics
	Further Reading

