ALGO

Alexandre Duret-Lutz

October 28, 2019
These are incomplete® lecture notes for the “ALGO” course taught
to ING1 students at EPITA. This course studies the complexity of algo-

rithms, and introduces students to several mathematical tools useful to
analyze algorithms and derive complexity bounds.

Contents

Mathematical Background 4

. Two Y. Notations for Sums 4
Logarithms 5

Floor | x| and Ceiling [x| of x 6
Simple Combinatorics 7
Triangular Numbers 8
Tetrahedral Numbers 9
Pyramidal Numbers 10

Sum of an Arithmetic Progression 11

‘ Read this before the second lecture

Sum of a Geometric Progression 12
Catalan Numbers 13

Bounding Sums with Integrals 14
Summing Using the Reciprocal 15
w Finite Calculus 16

Binary Trees 17

Computing Complexities for Algorithms 18
SELECTIONSORT 19
INSERTIONSORT 20
Average-Case Analysis 21
BINARYSEARCH 22

Definitions for Big-®, Big-O, and Big-C) Notations

Properties of Big-®, Big-O, and Big-() Notations 24

Usage of Big-®, Big-O, and Big-() Notations 25
A Bestiary of Common Complexity Functions 26
Merging two Sorted Sub-Arrays 27
MERGESORT 28

Exploring Recurrence Equations 29

* The latest version can be retrieved
from https://www.lrde.epita.
fr/~adl/ens/algo/algo.pdf.
Please email me any correction to
adl@lrde.epita.fr.

Sections or paragraphs introduced
with this mark contain more advanced
material that is not strictly necessary
to understand the rest of the text. You
may want to skip them on first read,
and decide later if you want to read
more.

https://www.lrde.epita.fr/~adl/ens/algo/algo.pdf
https://www.lrde.epita.fr/~adl/ens/algo/algo.pdf
mailto:adl@lrde.epita.fr

ALGO

Solving Recurrence Equations by Differentiation 30

Master Theorem for Recurrence Equations 31

Establishing Upper Bounds by Mathematical Induction 32

When Mathematical Induction on Recurrence Fails 33
More Examples of Complexities 34

Nearly Complete Binary Trees 34

Heaps 34

Heapriry and BuiLbpHEAP 35

The Complexity of HEAPIFY 36

The Complexity of BuiLDHEAP 37

HEeaPSoORT 38

ParTITION 39

QuickSoORT 40

Worst and Best Cases for QUICKSORT 41

Average Complexity of QUICKSORT 42

QuickSorrt Optimizations 43
INTROSORT, or How to Avoid QuickSorT’s Worst Case 44
QUuICKSELECT 45

Average complexity of QUICKSELECT 46
Linear Selection 47
Space Complexity 48
In-place Algorithms 48
More Sort-Related Topics 49
Stable Sorting Techniques 49
Further Reading 50

««> NOTATION -~

ALGO 3

Although this document is written in English, it targets French students. As such, it mixes conventions

from different origins. For instance, I prefer to write C and C (for the analogy with < and <) rather than

the C and & convention commonly used in France.

IN
N+
V4
R
ACB
ACB
log, x
Inx

iff
positive
negative

non-positive
non-negative

the set of natural numbers, including 0. N = {0,1,2,...}

the set of natural numbers, excluding 0. N* = {1,2,3,...}
the set of integers

the set of real numbers

A is a subset of (and possibly equal to) B

A is a proper subset of B

the logarithm of x in base a

log, x, the natural logarithm

the floor function, largest integer less than or equal to x

the ceiling function, smallest integer greater than or equal to x
the nth falling power of x: ¥ = x(x —1)(x —2)... (x —n+1)

a binomial coefficient:

there are (}) = 7{—1,{’ ways to choose k items out of n

the set of functions that, up to some multiplicative factor, are dominated
by f(n) asymptotically

the set of functions that, up to some multiplicative factor, dominate f (1)
asymptotically

the set of functions that, up to some multiplicative factors, dominate and
are dominated by f(n) asymptotically

f(n) is asymptotically equivalent to g(n), i.e., lim

if and only if

(strictly) greater than zero (x > 0)
(strictly) less than zero (x < 0)

less than or equal to zero (x < 0)
greater than or equal to zero (x > 0)

pages5
page 5
page 6
page 6
page?7

page?7
pages 23—24
pages 23—24

pages 23—24

page 24

Mathematical Background

There are a couple of mathematical notions we need to review before
we turn our attention to algorithms. I expect you to be already famil-
iar with many of those, but you might learn of few tricks along the
way.

Two Y, Notations for Sums

A sum such as ag + a1 + - - - + a,_1 is more compactly written

Y

n—1
Z ay or, using a more general form,
k=0 0<k<n

The latter form has a couple of advantages over the former one.

o As this example demonstrates, we can use the semi-open interval®
0 < k < n instead of the more tedious 0 < k <n — 1.

e Thesum Y kclearly evaluates to 0 when b < a since there is
a<k<b
b
nothing to sum. This is not so obvious3 with Z k.
k=a

e The general form supports the addition of more constraints. The
sum of all odd numbers below 1000 can be expressed as

499
Y.k orless intuitively Y 2k +1. (1)
1<k<1000 k=0
k odd

o The general form makes variable substitutions much less error-
prone. Let us look at the sum of all odd numbers from (1) and see
how we can derive the right-hand expression starting from the
left-hand one.

Since k should be odd, let us replace all occurrences of k by 2k + 1:

k=Y 2+1
1<k<1000 1<2k+1<1000
k odd 2k+1 odd

As 2k + 1 is always odd, the constraint is now superfluous:

2k+1=

1<2k+1<1000
2k+1 odd

2k +1
1<2k+1<1000

We can simplify 1 < 2k 4+ 1 < 1000 by subtracting 1 from all sides,
and then halving them:

Yo 2%+1=)

1<2k+1<1000 0<k<499.5

2k+1

Now since k is an integer changing 0 < k < 499.5 into the equiva-
lent 0 < k < 499 gives us the right-hand expression of (1).

ALGO 4

> As programmers you should learn
to love semi-open intervals. Think

for instance about how begin () and
end () are used in the C++ standard
library. If the interval was closed (i.e.,
if it included the value pointed to

by end ()) you would not be able to
specify an empty range.

3 But true nonetheless. Le., it is wrong
b a b
towrite)k =} kbecause the)
k=a k=b k=a
notation is about going from a to b
using an increment of 1.

http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF

Logarithms

The logarithm in base a4, i.e., the function x — log,, x, is the reciprocal
function of x — a*. Figure 1 shows a few examples.

It is common to write In x = log, x for the natural logarithm4, i.e.,
the logarithm in base e. But this natural logarithm will have almost
no use to us. When analyzing algorithms, we will usually encounter
log, x for various integer values of 4, and most often a = 2.

There is a simple algorithm for computing a logarithm in any
base, using only elementary operations. This algorithm is also a
perfect exercise to practice logarithms.

Let us compute log;,(1385) up to two decimal places. Because
x +— log,, x is the reciprocal function of x + 10% we know that
log;,(1000) = log;,(10%) = 3 and log;,(10000) = log;,(10%) = 4.
Furthermore, since 1000 < 1385 < 10000 and log;, is an increasing
function, it follows that 3 < log;,(1385) < 4. We are therefore
looking for two digits a and b such that

log,(,(1385) = 3.ab... (2)

To find a, we should subtract 3 from both sides, multiply everything
by 10 and rework the left-hand side as a log,y:

log,(,(1385) —3 = 0.ab . ..
log,,(1385) — log;,(10%) = 0.ab...

1385

log,,(1.385) = 0.ab (3)
10log;,(1.385) = a.b..

log;(1.385 59) =ab.. (4)
log,(25.9715419...) = a.b..

Since 10! < 25.9715419... < 10* we conclude thata = 1. Did
you notice what happened between (2) and (3)? When we have
log,, x = y, removing k from y is equivalent to shifting the decimal
point by k places in x.5 Also, looking at (3) and (4), multiplying y
by 10 is equivalent to raising x to its 10th power.® We can now use a
similar procedure to find b:

log,((25.9715419...)
log,,(2.59715419...)
)
)

log,(2.59715419....1°

1b
0.b
b..
log,(13962.955. b..

Since 10* < 13962.955... < 10° we conclude that b = 4 and we have
just computed that log,,(1385) ~ 3.14.

You can adjust this algorithm to compute a logarithm in any
base. Using paper and pen, the only difficult step is to compute x1°
However, unless you plan to compute a lot of decimal places, you do
not necessary need a very precise result.”

ALGO §

Figure 1: Various logarithms and their
reciprocal functions. This figure is
restricted to positive values because
negative values will never occur in the
analysis of algorithms.

4Trivia: x +— Inx is sometimes called
Napierian logarithm after John Napier
(known as Neper in France), despite
the fact that the function he defined

in 1614 was different. The natural
logarithm was introduced by Nicolaus
Mercator in 1668 using the series
expansion of In(1 + x). Finally around
1730 Leonhard Euler defined the
functions e* = lim, 00 (1 + x/n)" and
Inx = lim,,_yeo 7(x!/" — 1) and proved
that they are the reciprocal of each
other.

5 This is because we are working with a
base-10 logarithm.

¢ This is independent on the base of
the logarithm: this 10 is the base in
which we represent numbers on the
right-hand side.

7 You can compute x'° using only 4
multiplications. Can you see how?
Hint: x* requires 2 multiplications.

Floor | x| and Ceiling [x]| of x

Given a real number x, the notation | x| denotes the largest integer
smaller than x. Conversely, [x]| denotes the smallest integer larger
than x. Figure 2 illustrate both functions, called respectively floor
and ceiling.8 For instance | 7| = 3 and [71] = 4. These two functions
have no effect on integers: [12] = [12] = 12. In fact for any real
number x we have:

[x] < [x]
x] = [x]iffx€Z
1+ [x] =[x]iffx ¢ Z

For any n € Z and any x € R the following properties hold?:

x| <= n<x
=n<= x—1<n<x < n<x<n+l1
n<= x<n<x+1<= n—-1<x<n

Foranyn € Nwehaven = [n/2| 4+ [n/2]. We can prove
this equation by considering the parity of n. If n is even, |n/2| =
[n/2] = n/2and the equation holds trivially. If n is odd, then
|n/2| =n/2—1/2and [n/2] =n/2+1/2 so the sum is indeed n.
Rounding to the nearest integer can be done with |x + 0.5] or
[x — 0.5] depending on how you want to round half-integers*°.
Now let us nest these rounding notations. It should be easy to see
that [[x]|] = |[x]] = [x] and [[x]|] = |[x]] = [x], i.e., only the
innermost rounding function matters.
Furthermore, forany n € N*, m € N* and x € R we have':

[|x/n]/m| = |x/nm]
[[x/n]/m] = [x/nm]

The floor notation should be used any time we want to represent
an integer division, for instance as in Figure 3.
When rounding logarithms you should know the following iden-
tity:
[logy(n +1)] = [logy(n)] +1
To prove that, rewrite n as 2" + p wherem € INand 0 < p < 2™.
Then:

[logy(m)] +1 = [log, (2" (14 57)) [+1=m+ | log, (1+ F) | +1

————
1<---<2

=m+0+1=m+1, and

[log,(n +1)] = [mg2 <2m <1+ p;f)ﬂ =m+ [10g2 (1+Pz+m1

1<.--<2

=m+ 1.

ALGO 6

Figure 2: The functions | x| and [x].
8 The C standard library has two
functions floor () and ceil () that
round a double accordingly.

9 Exercise: demonstrate | —x| = —[x]
using these properties.

°j.e., values of the form n + 0.5 with
n € N. Should they be rounded down
ton,orupton+1?

" Note that these two equations are
only good when n and m are integers.
For instance | [10/.3]/.3| = 111 but
[10/.3/.3] =110.
int avg(int a, int Db)
{

return (a + b) / 2;

}

Figure 3: If we ignore overflows, this
function computes | “5¢ | because
dividing an int by another int will
always round the result towards zero.

ALGO 7

Simple Combinatorics
> By word, we mean just any sequence

e Assume you have a set S of n different letters. How many differ- of letters, not necessarily a meaningful

ent words™ of length k can we build using only letters from S,
assuming we can use the same letter multiple times? There are
n possible letters for each of the k positions in the word, so the
number of choices is 1 x 1 x 1 x - - - x n = n*. See Figure 4.

k terms
What if we are only allowed to use each letter of S at most once?
Then after we have selected the first letter among the n available,
we are left with only n — 1 choices for the second letter, n — 2 for
the third letter, etc. The number of words of length k < n we can
build without repeated letter is therefore
n!

nx(n—l)x(n—2)><~"><(”—k‘|‘1):”lkzm

k terms
See Figure 5 for an example. The notation 1%, with an underlined
exponent, is the k' falling power of n: it works like a power except
that its argument is decremented by one after each product.’3> We
can define the falling power recursively as n’ = 1 and for k > 0,

nk = n x (n — 1)5=L. In particular we have n” = n!.

Let us now build subsets of S that contain k letters. We could pro-
ceed as we did for building words of length k with unique letters:
choosing the first letter among #, then the second among n — 1,
etc. We can actually associate each word to a set. For instance,
the word ab would correspond to the set {a, b}, the word bc to
{b, c}. The problem is that this correspondence is not a one-to-one
mapping: the word ba would also be mapped to the set {a, b}
since sets are not ordered. For a given set with k letters, there are
Kk = k! different words. So the number of subsets of size k built
from a set of size 1, is equal to the number of k-letter words we
can build without repeating letters from # letters, divided by the
k! numbers of ways to order these k letters.

k

The number (}), pronounced ‘n choose k, is called binomial co-
efficient because it is the coefficient of x*y" ¥ in the polynomial
expansion of the n" power of the binomial x + y:

" n
(cty)=1 <k> =t
What is the total number of subsets of S (of any size)? To build
one subset, we iterate over each letter of S and decide whether
we take it or not. We have 2 possibilities for each of the n letters,
that makes 2" different subsets. On the other hand, this number
of subsets is also the sum of all subsets of different sizes, as com-
n
puted in the previous paragraph. So we have Z (n) = 2"as

k=0 k
illustrated by Figure 7.

word in some dictionary.

aab—aa——4 ¢ ——cc=—cch
aﬂc/ ah/ 1‘7 \Cb \CCg
01097 BN Che
o ac / ‘ \ ca

Figure 4: Over the alphabet {4, b, c}
there are 3! ways to build a 1-letter
word, 32 ways to build a 2-letter word,
and 3% ways to build a 3-letter word.
There is only 3° = 1 way to build the
empty word (denoted ¢).

abe-ach - bea - baccab- cha - 33

Figure 5: Without repeating letter there
are only 3! = 3 ways to build a 1-letter
word, 32 = 3 x 2 ways to build a 2-
letter word, and 3% = 3 x 2 x 1 ways to
build a 3-letter word.

3 When both 7 and k are natural
numbers such that k < n, we have
nk = n!/(n — k)!. However, the
falling power can be used even when
n is a complex number, or when k is
larger than n, two cases that are not
supported by the expression using
factorials.

Q)eeereeereeeennens 30/01 = (3)
{a}/{c}\{b} 3l/11 = (2)
> > '
{a,c}{a,b}{b,c} 32/21 = (5)

~N |7
D) S— 33/31 = (3)

Figure 6: When the words of Figure 5
are converted to sets, the tree collapses
into this lattice.

1— 20
1—1—+— 9l
1—2—1— 92
1—3—3—1——23
1—4—6—4—1 24
1—5-10-10—5—1 25
1—6—15-20-15—6—1 26

1—7-21-35-35-21-7—1—727
Figure 7: The sum of each line of
Pascal’s triangle is a power of 2.

Triangular Numbers

n
The numbers A, =0+ 1+2+---+n =) _ kare called triangular
k=0
numbers because they can be represented as in Figure 8.

The equality A, = n(n + 1)/2 can be demonstrated in several
ways.

e By induction*. You probably already did it when you learned
induction. The proof is based on the fact that A, = A, 1 +n.

e By summing twice: once forward, and once backward.">

Ap=0+ 1+ 24---+(n—-1)+n
Ap=n+n—-1)+n—-2)+---+ 1+0
2A, =n+ n+ n+---+ n+n

Since there are n + 1 terms on the right-hand side of the last line,
we find that 24, = n(n+1).

Figure 9 shows a graphical version of this demonstration.

e The previous demonstration is easily performed using the)
notation as well:

= (29 (2

Replace k by n — k in the second sum:

2An:<). k>+<) n—k)
0<k<n 0<n—k<n

Simplify the constraint of the second sum:

() (LB
24, = (0;@1 k) + <O§Xk:§nn - k)

Finally merge the two sums:

24,= Y (k+n—-k)= Y n=n(m+1)

0<k<n 0<k<n

n+1

e Asseen on page 7, there are ("] ") subsets of length 2in {0,1,...,n}.

Let {x,y} be such a subset, and assume x < y. Let us count all
subsets existing for the different values of x. If x = 0, there are n
possible values for y; if x = 1 we have n — 1 possible values for y;
etc. If x = n there is no value available for y. The sum of all these
n+(n—1)+---+0just happens to be A,. So we have

A, — <n+1) (n —;l); (n—;l)n.

) — —

Figure 10 should therefore not be a surprise.®

ALGO 8

O
{le i2ee |3ee®

Ag=0 Aj=1 Ay =3 A3=6

O

o e]e)
o 00 000
e]e) 000 0000

Figure 8: The first triangular numbers.

4 Induction is of no use to you if you
do not already know the solution. If
this was a new problem for which you
suspected (maybe after looking at a
few values) that A, = n(n +1)/2, then
induction would be a way to prove that
your intuition is correct.

'5 Gauss reportedly found this trick
while he was a child.

1000000000
2000000000
3000000000
000000000
000000000
0000000006
00000000062
"0 00000 0!

n+1

Figure 9: Another way to see that
2A,;, = n(n+1): there are A, dots
of each color arranged in a n by n + 1
rectangle.

1 3/3 1
1 4/6 4 1
1 540 10 5 1
1 6 /1520 15 6 1
1 7 21353521 7 1
Figure 10: Triangular numbers form a
diagonal of Pascal’s triangle.

6 By convention () = 0 whenk > n or

k < 0 (i.e., outside of Pascal’s triangle)

so our ("3 is also valid for Ay.

Tetrahedral Numbers

What happens when we sum all consecutive triangle numbers?

n noj
BnIA0+A1+"'+An:ZAj:ZZ
j=0 j=0k=

We get tetrahedral numbers, so called because stacking the triangles of
Figure 8 gives you a triangular pyramid as shown in Figure 11.

The closed formula is B, = n(n+1)(n 4 2)/6 and there are again
a couple of ways to prove it.'7

e Induction is still a possible option. The key step is that B, =
B + A, = (n—=1)n(n+1) + n(n+1) _ n(n+1)(n+2)
n—1 n — 6 7 - 6 .

e Note that the above formula (nfl)z(nﬂ) + n(n2+1) = n(n+1g(n+2) is

simply a long way to write ("3") + ("1') = ("}?). You may find it

n-‘rZ)

easier to remember that B, = (forming another diagonal of

Pascal’s triangle (Figure 12).

Since each diagonal of Pascal’s triangle is made of the partial sum
of the previous diagonal, you should find very easy to guess a
formula for the sum of consecutive tetrahedral numbers:

ik_ <n+1)/ iiok: (n—30—2>/ iZZk— <n+3)‘

i=0j=0k=0

o The above two points require you to know (or suspect) that B, =

w or B, = ("}?) in order to prove it by induction.

How can we find a closed formula for B, if we do not know

that? Looking at how balls are stacked in 3D in Figure 11, we

can assume that B, should represent some volume, i.e., a cu-

bic polynomial. Or if you prefer a more mathematical view: A;

is a quadratic polynomial, By, as the sum of n of these terms,
should be expressible as a cubic polynomial. So we guess B, =
an® + bn® + cn + d and we just need to evaluate this for a couple
of values of n to find 4, b, ¢, and d. Evaluating By = 0 tells us that
d =0. From B; =1, B, = 4, and B3 = 10 we get:

a+b+c=1 c=1—-a—-b»
8a+4b+2c=4 hence 6a+2b=2
27a+9b+3c =10 24a+6b =7

c=1—-a—-"b c=2/6

hence b=1-3a hence b=3/6

ba+6=7 a=1/6

Thus we have found that %, which happens to be equal to

W, is a polynomial that will work forn = 0,1,2,3, and

we can prove by induction that it is correct for any n € IN.

ALGO ¢

tAe TAE
Bp=0 Bi=1 By=4

4 A @ +Aq
Bs=10 By=20

+A5 +A6

Bs =35 Bs = 56

Figure 11: The first tetrahedral num-
bers.

7 Do not confuse this formula with the
Cy, =n(n+1)(2n+1)/6 from page 10.

1 1
1/1 Yl=mn
VaE yyl=A,
1.3 /3 /1 Z Z Z 1= Bu
146 4 1
1 /5 1010 5 1
16 15 20 15 6 1
Y@ ereys 21 7 1
Figure 12: Tetrahedral numbers form
another diagonal of Pascal’s triangle.
(Note that these sums implicitly start at
1, not 0 like in the rest of the page; do
you see why it matters in this picture?)

ALGO 10

- e 1P
Pyramidal Numbers Com0 Ci=1 G5
) &b
The numbers C, = 02+ 12422+ ... + 1% = Z k? are called +9& +16
k=0 C=14 Cs =30
pyramidal numbers because they represent the number of spheres
stacked in a pyramid with a square base, as shown in Figure 13. @ %
Unlike previous numbers, we will not give the closed formula di- 2 Cs = 55 36 Co = 91

rectly. It seems remembering the formula is hard for many students, Figure 13: The first pyramidal num-

so maybe it is best to learn three ways to rediscover it. bers.

e Since this is a sum of n squares, and Figure 13 gives a 3D inter-
pretation, we can, as we did on page 9 for tetrahedral numbers,
assume that Cy, is cubic polynomial an® + bn? + cn + d and use
the first values of C,, to find its coefficients. From Cy = 0, we learn
thatd = 0. Using C; =1, C; =5, and C3 = 14, we get:

a+b+c=1 c=1/6
8a+4b+2c=5 whose solution is b=3/6
27a +9b +3c = 14 a=2/6

Hence our polynomial is % and without too much effort'8 ¥ Because two of the three roots are

.. to find: 0 and —1.
we can factorize it as w. casy to in an

By construction this formula is correct from Cy to Cs. If we as-

sume thatC,,_; = 7("71)"6(2"71), thenC, = C, 1 +n? =

n(2n?=3n+1)+6n% _ n(2n?+3n+1) _ n(n+1)(2n+1)
6 = 6 = 6

. Hence by induction
our formula is correct for all n € IN.

n

e LetuscomputeS =) ((1 +1)% - i3> in two ways. First, we

i=0
separate it in two sums which almost cancel out each other'?: 9 Watch out for the indices in these
two sums! The first sum is changed by
5 — Z . 1)3 w 3 ntl 3 " 3 1)3 replacing i by i — 1 and rewriting the
_Z(l+) _zl _ZZ _Zl —(7”1—0—) (5> range0 <i—1<nintol <i<n+1.
i=0 i=0 i=1 i=1 In the second sum we just omit the first
In a second approach, we develop the summand and express the term, because it is equal to 0.

result as a sum of triangular (page 8) and pyramidal numbers:
n
S=Y (3i*+3i+1)=3C, +3As+n+1 (6)
i=0
Since (5) and (6) are two expressions for S, we get that 3C, +
3A, +n+1 = (n+1)3 Knowing a formula for A,, we get
3C, = (n+1)((n+1)2 = 3n —1) hence C, = “tl2n+l),

e Consider each square used in the layers of a pyramid in Figure 13,
and split them into two triangles by the diagonal. One triangle * ‘ ‘
(the larger one, drawn using e in Figure 14) includes the diagonal,
and the other does not. The sum of the larger triangles of all

layers of C,, is the tetrahedral number B, (page 9) while the sum E 00 o0
of all smaller triangles is B,,_1. Hence 4 00000 2892 933 oo ©
eocccoo 20000
n—+2 n+1
Cn=Bu+Bn1= < 3) + (3) Figure 14: A pyramidal number is the
sum of two consecutive tetrahedral
_n(n+1)(n+2) n (n—1)nn+1) n(n+1)2n+1) numbers.

6 6 6

Sum of an Arithmetic Progression

When analyzing algorithms, it often happens that the number of op-
erations performed in a loop is a linear function of the loop counter.
Then, the sum of all performed operations has the following form,
for some value of a and b:

n
Dy=a+(a+b)+(a+2b)+---+(a+nb) =) a+kb
k=0

Triangular numbers (page 8) are a special case of this sum with
a = 0and b = 1. In the general case we can rewrite D, using A;:

D, = (ia) + (ikb) :a(n+1)+bik:u(n+1)+bAn

k=0 k=0 k=0
—a(n+1) 4 2 ekt D)

But the same result is in fact even easier to obtain using Gauss’
trick of summing forward and backward:

D, = a+ (a+b)+ (a4+2b)+---+ (a+nb)
D,= (a+nb)+(a+n—-1)b)+(a+n—-2)b)+-- -+ a
2D, = (2a+ nb) + (2a 4 nb) + (2a+nb) +--- + (2a +nb)

Hence 2D,, = (2a + nb)(n + 1). Figure 15 gives an example with
a=1landb =2

The above trick has a huge advantage over expressing D, using
Ay: it can be generalized very easily to any partial sum of an arith-
metic progression. For instance, let us assume you want to sum all
the terms 3 + 57 for 100 < i < 1000. Calling S the result, you would
write

S= 503+ 508+ 513+ ---+ 5003
S = 5003 + 4998 + 4993 + - - - + 503
2S = 5506 + 5506 + 5506 + - - - + 5506

The number of terms>° in these sums is 901 since we go from i = 100
to i = 1000. Therefore 25 = 5506 x 901 and S = 2480453.
For any a, b, v < w, we have

]:é;a+kb: (2a+(v+w)2b)(w—v+1)

You might find the above formula easier to remember as

—v+1
((a+vb) + (a +wb))%,
that is: the sum of the first and last terms, multiplied by half the

number of terms.?!

:gf
_

2n+1

2n+2

n
Figure 15: The sum O,, = 2 2k +1

=0
of the first n odd numbers is such that
20, = n(2n +2) hence O, = n(n +1).

2> Always be cautious when calculating
the length of an interval: it is a frequent
source of off-by-one errors.

** But do also remember that this is
only valid for arithmetic progressions.

ALGO 12

Sum of a Geometric Progression

Consider the sum of the terms of a geometric progression of ratio r:

n
En=1+r+r+ - +r"=Y 1
k=0

An easy way to find a closed formula for this sum is to notice that

E, and rE;; have many terms in common:

En=1+r+r+ - 41"

tEn= r+4r2 4. 44
hence E, —rE, =1— "1
1— rn+l
and assuming r # 1, E, = <
The formula to remember is therefore:
n k 1-— TnJrl
F 1, R
orany r # kgor - (7)

When r = 2, we have 2k = 1*12:;1 = 2"*+1 _ 1, a formula that

should be known by any programmer. For instance the number

of nodes in a complete binary tree of height n (see Figure 16). A
binary number (111...1), that has all its n bits set to 1 represents
the value ZZ;& 2k = 2" — 1. In particular 28 — 1 is the maximum

value you can represent with a unsigned char variable, since

this type uses 8 bits.
We had to assume r # 1 because of the division by 1 — 7, but the
_ n+1
limit** of ———— when r tends to 1 is actually what we expect:
n n
Y tk=Y1=n+1
k=0 k=0
_n+l _ n
im L g D
r—1 1—r r—1 -1

Equation (7) can be used to rediscover the formula for Triangular
Numbers (page 8). To transform Y_ ¥ into Yk, we differentiate

Y. ¥ with respect to r, giving Y_kr*~1, and then we set r = 1. Of
course we must do these operations on both sides of (7), and we
have to take a limit for » — 1 on the right:

d1—ptl
AL
drZ Tdr 1—7

—(n+D)r"(1—7r)+ (1 —r"th

krk=1 =

k; (1-r)2
n n+l _ n n _
Zkzlimnr (n+i)r +1:hm(n+1)nr (n+1)
=1 r—1 (1 — 7‘) r—1 2(1’ — 1)
n—1(,
— lim (n+Dnr" " (r—1) (n+1)n
ol 2(r—1) 2

Similarly % (r% Zrk) = Y. k2rk=1 50 by setting r = 1 we get the

formula for the Pyramidal Numbers (page 8).23

20 nodes
21 nodes
22 nodes

23 nodes

3
Y ok=2t—1
k=0

Figure 16: A complete binary tree of
height 3 has 24 — 1 = 15 nodes.

22 Limits on this page are computed

using L'Hopital’s rule: if lim f (x) =
Fx)
e g'(x)

lim g(x) = 0and hm exists, then
X—C

L S
x=e g(x) X*}C g'(x)’

23 Doing so is left as an exercise to
the reader. If you survive the double
differentiation and the computation
of the limit, and obtain the expected
w, treat yourself with a
well-earned lollipop.

Catalan Numbers

A Dyck word of length 2n is a string built using 7 opening paren-
theses and 7 closing parentheses, in such a way that a closing
parenthesis always matches an opening one. For instance w; =
(€O 0)) () isaDyckword, butw, ="(())) (()) () ("isnot.

Let P, be the number of Dyck words of length 2n. This integer
sequence (Table 1) is known as the Catalan numbers>4.

A string with n opening parentheses and 7 closing parentheses
can be interpreted as a path on a square grid (Figure 17). Starting
from the lower left corner and interpreting the letter “ ("and *) ’
respectively as up and right, we necessarily reach the above right
corner. The number of paths that join the two corners using only n
up and n right movements is (Zn”): from the total of 2n movements
we simply have to choose n which will be the ups. (Or if you prefer
working with words: in a string of 2n characters we have to choose n
positions among the 21 positions available to put the * (" letters.)

Not all these (277) paths correspond to Dyck words, only those that
stay above the diagonal. To count the number of paths that do not
correspond to Dyck words, let us consider the first segment of the
path that goes below the diagonal, and flip all up and right move-
ments afterwards (Figure 18). This is a reversible operation that can
only be done on paths that do not represent a Dyck word. Since the
resulting path has only n — 1 up movements, there are (nz_”l) words of
length 27 that are not Dyck words. We have established that

2n 2n
() (%)
which we can simplify:
2n)(2n—-1)---(n+2)(n+1) (2n)2n—-1)---(n+2)
n! (n—1)!
_(@n)@2n—-1)---(n+2)(n+1) <1 n)

n! Cn+1
1 2n
Pi= o (%) ©)

Note that (8) tells us that P, is an integer even if it is not that obvi-

ous from (9).

Catalan numbers have a vast number of applications.?> For in-
stance the number of full® binary trees with internal nodes is Py.
To see that, make a depth-first traversal of some full binary tree and
write * (" each time you get down a left edge, and *) ” each time you
get down a right edge (Figure 19 below).

0)) 0 0) (0) 0 0 C0) 000

(

ALGO 13

P, Dyck words

0 1 ¢ (empty word)

1 1 0

2 2 00, 0)

3 5 000,000,
(OO, O 0), O

4 14

6 42

7 132

Table 1: Number of Dyck words for
various 1, a.k.a. Catalan numbers.

>4 Named after Eugene Charles Catalan
(1814-1894).

Figure 17: The words
w="((00)) () and
wy="(())) () () ("interpreted
as paths on a grid. The letter * (" is up,
while *) ” is right. Dyck words corre-
sponds to paths that stay above the
diagonal.

* flip after x

n+1

Figure 18: Flipping all ups and rights
that occur after the first segment below
the diagonal transform a path with n
ups and n rights into a path with n — 1
ups and n + 1 rights.

5 And also many different proofs.

26 A binary tree is full if all its internal

nodes have degree 2.
Figure 19: The'P; = 5 full binary trees

with 3 internal nodes and their relation
to Dyck words of length 6.

Bounding Sums with Integrals

The technique presented on this page justifies (and generalizes)
the intuition we used on pages 9 and 10 that the sum of n quadratic
terms should be a cubic polynomial.

For more generality, let us consider the sum f(0) + f(1) +--- +
f(n) where f is some monotonically increasing function. Showing
these terms under the graph of f as in Figures 20 and 21 we have

[fooae< - s < [rgar
N =0

Note that the length of the two integration intervals is equal to the
number of terms in the sum.?”

These inequalities come in handy to bound a sum that we do
not know how to simplify. For instance, let us pretend that we do
not know how to compute triangular numbers (page 8). We simply
rewrite the above inequalities with f (k) = k:

n n n+1
[kdk< Y k< [kdk

Since the antiderivative®® of k is k% /2 we get:

2 n n 2qn+l
=] =g [3]
2 -1 k=0 2 0

2 n 2
n 1<2k<(n+1)
2 = 2

We do not have an exact value for this sum, but from these bounds

we can at least derive some asymptotic equivalence®9:
n n2
Y ke~
k=0

A complexity we will encounter later is log, (n!). Do you think
that using log, (n!) operations to sort n value is efficient? It is hard
to tell if you have no idea how fast log, (n!) grows. Luckily, we can
rewrite log, (n!) as a sum:

log, (n!) = log, (ﬂ k) - k"zllog2<k> - k22 log, (k)

and then we simply apply the bound-by-integral technique3°:

n n n+1
/ log, kdk < Y log, (k) < / log, kdk

o (2] e <o ()]

ALGO 14

fO)f(D)]£(2) f(n)

-1 0 1 2

n n+1

Figure 20: When f (i) is interpreted as
an area between i and i + 1, we have

FO) + -+ f(m) < o flk)dk.

0)|f(1)|f(2) f(n)

T
n n+1

Figure 21: If f(i) is interpreted as an
area between i — 1 and i, we have

fO)+-+f(n) = [, fk)dk.

*7 Using a semi-open interval for the
sum, we can rewrite these inequalities
using the same bounds for the sum and
integrals:

n+1

n+1

[=1k < Cp) < [ok
0 0<k<n+1 0

2 a.k.a. primitive

zgfwgiﬁ,}ggo%ﬂ

3 If you learned that the antiderivative
of In(x) is x In(x) — x, just erase it from
your memory, and use the freed space
to store a formula that will work for

all bases instead: the antiderivative of
log,(x) is xlog,(x/e).

2
nlog, n — nlog,(e) +log,(e) <log,(n!) < (n+1)log,(n+1) — (n+1)log,(e) —2log, (e)

From that we easily conclude log, (n!) ~ nlog, n. A sorting algo-
rithm that performs in the order of nlog, n operations is actually
pretty good.3*

For a more precise tie between sums and integrals, look up the
Euler-Maclaurin formula in your preferred encyclopedia.

3 Later we will demonstrate that any
sorting algorithm that uses compar-
isons to order values requires at least
nlog, n comparisons in the worst case.

https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula

Summing Using the Reciprocal

Here is a nifty trick to deal with sums such as }_;|log, i|. Let us
consider the following sum, which we will encounter later.

E, = i({lo& i|4+1)=n+ iLlogz i

The trick, pictured on Figure 22, is to express the sum3 of a strictly
increasing function f using the sum of its reciprocal f 1.

4
Z 2/(
k=1

SO = N W

0 1.2 3 45 6 7 8 9 101112 13 14 15 16

16
Z |log, k|
k=1

Generalizing this figure for any 1, we have

n log, 1] [log, n J
Y [log, k] = (n+1)|log, n] — 2 2= (n+1)|logyn| +1-) 2F
k=1 k=0

=(n+1)|log,n|+2-— 2llogy n)+1

n
Finally, F, = n + Z |_10g2 iJ =n+(n+ l) I_I()gz nJ +2— o llogy nj+1
i=1

= G =

Why do we care about such a function? Because |log,(n)] + 11is
the number of bits required to represent the number # in binary, and
many algorithms have a run time proportional to that. F, is the sum
of the bits needed to represent each number between 1 and n (see
Figure 23).

For instance, running a recursive implementation of Bina-
RYSEARCH (page 22) on an array of length 7 involves at most
2 + |log,(n
NARYSEARCH.

)] calls (the first one plus the recursive ones) to Bi-

Now let us assume that you are doing a binary search to insert
a new element into a sorted array, and that you do this in a loop,
so that each binary search is applied to an array that has one entry
more than the previous one. The total number of calls the BINARY-
SearcH (including recursive calls) will therefore have the form
j

Z(Z + [log, k])

k=i
where i and j depends on the initial size of the array and the number
of iterations (i.e., binary search + insertion) performed.

ALGO 15

32 This trick can be applied to integrals
as well.

Figure 22: The total area covered by
those two sums is a rectangle, and we

16 4
have) " [log, k] =17 x4— Y 2k,

k=1 k=1
110]0f(0]|0f1
2|10(0]0f1]0
310(0]0f1])1
4|10(0]110]0
5/0(0]1(0]|1
6/0)10[1]1]0
71010]1(1]1
8/011]{0]0]0
910(1]0(0]|1
10/0(1]0}1]0
11(011]0]1]1
12(0]1]1]0|0
13(011]1]0]1
14|0(1]1)1]0
15011117111
16(1]10]0|0|0

Figure 23: The first 16 positive integers
with their binary representation. The
log, (i) + 1 bits needed to represent the

number i are highlighted . If you omit

the last column (a total of n bits), the
two colored areas are the same as in
Figure 22.

ALGO 16

Finite Calculus

For those of you curious to learn new tricks, here is something called
Finite Calculus. This page should by no means be understood as a

reference on this subject, instead, consider it as a teaser33. 33 For a more serious presentation of
The idea is that a sum of k% over a half-open interval behaves like Finite Calculus, I suggest you start with
.))] Finite Calculus: A Tutorial for Solving
the integral of k* over the same interval. So summing these falling Nasty Sums, by David Gleich.
powers34 should be very natural (at least if you remember how to 34 The falling power was defined on
0 _ C -1
integrate). Compare the following equations: page7ask® =1and k* = k(k —1)*=.
n
Z 1l=n / 1dk =n
0<k<n 0
2 n 2
n= n
Y, k== kdk = =
0<k<n 0
3 n 3
n= n
Y = 5 k*dk = 5
0<k<n 0
n(X+1 n nzx—H
Z K= 7 k*dk = 7
0<k<n &+ 0 &+

These work on non-zero based intervals as you would expect from
an integral. For instance

a+1

ka+1 r]'zx—&-l _ l-a+1

Z K= [oc—i—l

i<k<j i

Following these rules, we can for instance compute the tetrahedral

numbers of page 9 very easily (just remember to use semi-open

intervals35): 35 They have to be closed on the left
side, and open on the right side.

By=)_ Y k = Z(j+1)2_(n+2)a_1j (nt2)3

0<j<n+1 0<k<j+1 0<j<n+1 2 6 \,@ 6

0
If we look at functions other than falling powers, the analogy
between sum and integral does not always exist. For instance, it
would be tempting to see the sum of 2* as the analogous of the
integral of e*:

o j o
Yy k=02 /ekdk:e]—el

i<k<j !

but the sum and integral of x* do not actually exhibit that much
similarities:

x — xt j ¥/ — xf
Z xk = 1 / xkdk =
i<k<j - i

https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20finite%20calculus.pdf
https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20finite%20calculus.pdf

Binary Trees

Let us define a binary tree recursively as follows: a binary tree is
either the empty tree @, or a pair of binary trees (L, R) where L is
called the left child, while R is the right child.

As Figure 24 illustrates, a binary tree can be represented as a
graph where each pair (L, R) is represented by a node connected
to new nodes created for each of its non-empty children. These
graphs are traditionally drawn going down, with the left and right
children located on the corresponding side below their parent node.
With this drawing convention the shape of the graph is enough to
uniquely identify a binary tree, so we can forgo the mathematical
notations and work only with pictures such as Figure 25.

A node that has only empty children (i.e., a node labeled by
(@,@)) is called a leaf node. The other nodes are called internal
nodes. These two sets of nodes are shown with two colors on Fig-
ures 24 and 25, but this coloration is purely cosmetic. The topmost
node is called the root of the tree3®. The degree of a node is the num-
ber of non-empty children: the leaves are the nodes with degree o,
while internal nodes have degree 1 or 2.

A full binary tree is a binary tree where all internal nodes have
degree 2. The binary tree of Figure 25 is not full, while the one of
Figure 26 is. Figure 19 on page 13 shows all possible full binary trees
with 3 internal nodes.

The depth of a node is the number of edges between this node and
the root. The root itself has depth 0; its children have depth 1; its
grand children have depth 2; etc. The height of a tree is the maximum
depth of its nodes.37

You should be able to prove the following properties3® by yourself:
e A binary tree with n nodes has n — 1 edges.39

e A binary tree with £ leaves has exactly £ — 1 internal nodes of
degree 2.

e A binary tree of height / has at most 2" leaves.
e The height of a binary tree with £ > 0 leaves is at least [log, ¢].

e The number of nodes of a binary tree of height / is at most 21 —
1.

e The height of a binary tree with n > 0 nodes is at least [log,(n +
1) — 1], which we have shown on page 6 to be equal to |log,].

A full binary tree of height & is balanced if the depth of each leaf
is either h or h — 1. For instance, the full binary tree of Figure 26
is balanced because all its leaves have depth 2 or 3. A balanced full
binary tree of height i necessarily has ZZ;& 2k = 2" — 1 nodes
of depth 1 — 1 or smaller and between 1 and 2" nodes of depth .
So if we write n the number of nodes, we have 2" < n < 21
hence i < log,(n) < h+ 1and because 1 has to be an integer:
h = [log,(n)]. The height of a balanced full binary tree of n nodes is
therefore always |log, (1) |.

(@,2)

Figure 24: A graphical rep-
resentation of the binary tree
((2,2),2),(2,(2,2)),(2,2)))-

Figure 25: A nicer representation of

the same binary tree. This tree is not
full because it has two internal nodes of
degree 1.

3¢ In Figure 25 the root is an internal
node. Can you build a tree where the
root is a leaf?

depth
0
1
2

3

Figure 26: A full binary tree: each
internal node has two non-empty
children. The height of this tree is 3.

37 We could also write ““the maximum
depth of its leaves”, because for any
internal node there exists a deeper
leave.

3% All of these are for binary trees, they
do not assume the binary tree to be full.

3 Hint: what do every node but the
root have?

Computing Complexities for Algorithms

The time complexity of an algorithm, often noted T(n), is a func-
tion that indicates how long the algorithm will take to process an
input of size n. Similarly, the space complexity S(n) measures the ex-
tra memory that the algorithm requires. These two definitions are
vague4© on purpose, as there are different ways to compute and
express these quantities, depending on how we plan to use them:

e A complexity can be given as a precise formula. For instance, we
might say that SELEcTIONSORT requires n(n — 1) comparisons
and n swaps to sort an array of size n. If these are the most fre-
quent operations in the algorithm, this suggests that T'(n) can be
expressed as a quadratic polynomial T(n) = an® + bn + c. Know-
ing this, we can compute the coefficients 4, b, and ¢ for a given
implementation*' of SELECTIONSORT by measuring its run time
on a few arrays of different sizes.

If the implementation of two sorting algorithms A; and A, have
for time complexity Ty (n) and T,(n) as shown on Figure 277, we
can see that A; is better for n < 8, and A, for n > 8.

e A complexity can be given using Landau’s notation, to give an
idea of its order. For instance, we would say that SELECTIONSORT
has time complexity T(n) = @(n?). This means that when 1 tends
to oo, T(n) behaves like n? up to some multiplicative factor.

This notation simplifies the derivations of complexities because it
is only concerned about the asymptotic behavior of the algorithm.
For instance, a ®(nlog n) algorithm will be more efficient than a
©(n?) algorithm for large values of n. However, it tells us nothing
about the behavior for small values of #.

With this notation 10n% 4 21 and 212 + 10n would both be written
©(n?). Because of those hidden constants, we can hardly compare
two algorithms that have the same order of complexity.

e In computational complexity theory, problems (not algorithms)4>
are classified according to their difficulty. For instance, the class
PTIME (often abbreviated P) is the set of all problems that can be
solved by some algorithm in polynomial time on a deterministic
Turing machine. The class EXPTIME contains problems that can
be solved in exponential time.43 These classes are broad: PTIME
doesn’t distinguish between linear or cubic complexities, and
EXPTIME does not distinguish between 2" and 10", although
these differences certainly do matter to us as programmers.

In this lecture, we shall focus only on how to derive complexities of
the first two kinds.

ALGO 18

4 What would be the units of n, T(n),
and S(n)?

4 Two implementations of the same
algorithm are likely to have different
coefficients.

3,000

T
2,000 -

1,000 T

0 2 4 6 8 10 12

Figure 27: Ty (n) = 10n2 + 14n + 316
and T, (n) = 2n3 +5n + 4.

4 Sorting an array is a problem that can

be solved by many different algorithms.

4 Obviously PTIME C EXPTIME.

SELECTIONSORT

This is probably the simplest sorting algorithm to study.

Given an array A containing n values to sort in increasing order,
SELECTIONSORT maintains the loop invariant depicted by Figure 28:
at any iteration i, the values in the range A[0..i — 1] are the smallest
i values of A in increasing order (i.e., this part is sorted and will not
be changed), while the values in Afi..n — 1] are unsorted and larger
than all the values in A[0..i — 1].

When i = 0 the array is completely unsorted, and when i = n the
array is fully sorted. Actually we can stop after i = n — 2 because
after this iteration the only “unsorted” value, A[n — 1], is necessarily
the largest value in the array, so it is already at the right place.

To increase i while maintaining this invariant, all we need is to
exchange A[i] with the minimum value of A[i..n — 1]. This gives us
the following algorithm (illustrated by Figure 29):

SELECTIONSORT(A, n) (executions)
1 fori<Oton—2do n—1
2 min < i n—1
3 forj<i+1ton—1do (n—1)n/2
4 if A[j] < Almin] (n—1)n/2
5 min < j < (n—1)n/2
6 Almin] < Ali] n—1

Because line 1 iterates from 0 to n — 2, we can easily tell that lines
1, 2, and 6 will be executed n — 1 times. The other three lines are
involved in two nested loops: for a given i the loop on line 3 will
make (n —1)+1— (i+1) = n—i—1 iterations. We have to sum this
for all 7 using for instance the formula from page 11:

(n—1)n

(= : (=) +Q)(n-1)
Z(n—z—l)— 5 = 7

i=0

Finally line 5 should have an execution count that is at most (n —
1)n/2 since it is only executed if the previous comparison succeeds.

SeLEcTIONSORT performs (n — 1)n/2 comparisons (line 4) and
n — 1 exchanges (line 6). Since the execution counts of all the other
lines are also expressed using these quantities, we should be able to
approximate44 the total number of operations performed (or even
the time to execute the algorithm) as a linear combination of these
two quantities: a polynomial of the form an? + bn + c.

We can now predict the behavior of a SELEcTIONSORT imple-
mentation after measuring it on a few arrays of different sizes. For
instance, if an implementation gives the following timings:

size: 1,000 2,000 5,000 10,000 20,000 50,000 100,000 200,000
time: 0.001166 0.004356 0.018224 0.052226 0.173569 0.921581 3.678394 14.70667

we can use a least-square regression to fit these points to the follow-
ing quadratic polynomial as shown on Figure 30:

3.676-10710 xn? —4.422-10"8 xn +9.810-1073

a b c

Now we can estimate we need 24.5 minutes to sort 2,000,000 values.

ALGO 19

0 i n
smallest 7 largest n — i
values, sorted T values, unsorted

Figure 28: Loop invariant for SELEC-
TIONSORT.

[2][7[1]4]e[5]8]3]
—
[1][7[2]4]6[5]8]3]
-
[1][2[7]4]6[5]8]3]
[}
[1][2[3[4]6[5]8]7]
i
[1[2]3]4]6[5]8]7]

1

[1]2]3[4]5]6[8]7]
i
[1]2]3[4]5]6[8]7]
i
[1[2]3[4]5]6[7]8]

Figure 29: The colored arrows show
the exchanges performed on line 6

by SELEcTIONSORT. Exactly n — 1
swaps are needed to sort an array of 1
elements.

44 This is not exactly true, because
line 5 may not be proportional to any
of those. However, because line 5 is
simple and execute less often than
the comparisons, it should have little
influence in practice.

>>> import numpy as np

>>> x=[1000,2000, 5000, 10000,
... 20000,50000,100000,200000]
>>> y=[0.001166,0.004356,

.. 0.018224,0.052226,0.173569,
... 0.921581,3.678394,14.70667]
>>> p = np.polyfit(x, y, deg=2)
>>> print (p)

[3.67619503e-10 -4.42217128e-08
9.81022492e-03]
>>> np.polyval (p, 2000000) /60
24.506656289555412
Figure 30: Using numpy to find a
quadratic polynomial that is a best fit
(in a least-square sense) to our data
set, and then predict the run time of
our implementation on an input of size
2,000, 000.

INSERTIONSORT

While INserTIONSORT’S loop invariant (Figure 31) looks similar
to the invariant of SELEcTIONSORT (page 19), it is actually more
relaxed: there is no requirement for all the sorted values in A[0..i —
1] to be smaller than the unsorted values in A[i..n — 1]. We can start
with i = 1 because a sub-array of size 1 is always sorted. To increase
i, it is necessary to insert A[i] at the correct position in the sorted
range, shifting some values to the right to make some room. The
array will be sorted when we reach i = n, i.e., after the iteration for
i=n-—1

There are actually a couple of ways to implement the shift-to-
insert procedure.4> The pseudo-code below (illustrated by Fig-
ure 32) scans the sorted values from right to left, shifting right all
values greater than the one we want to insert (stored in the variable
key), and until it finds a smaller value or the start of the array.

INSERTIONSORT(A, 1) (executions)
1 fori<1ton—1do n—1

2 key « Ali] n—1

3 je—i—1 n—1

4 while j > 0and A[j] > keydo | Y;(t;+1)
5 Alj+1] < A[j] Liti

6 jej—1 Yt

7 Alj+1] < key n—1

Lines 1, 2, 3, and 7 are obviously always executed n — 1 times.
However, we are not able to give a precise count for lines 4, 5, and
6. If we let t; denote the number of iterations of the while loop for
a given i, then we can write that lines 5 and 6 are both executed
Z?:_ll t; times. Similarly line 4 is executed Z?:_ll (t; + 1) times because
the condition has to be evaluated one more time before deciding to
exit the while loop.

Our problem is that the actual value of t; depends on the contents
of the array A to sort, so we cannot compute a precise number of
operations that is independent of A. Instead let us look at some
extreme cases: what are the best and worst scenarios?

e The best case is when lines 5 and 6 are never executed.4® In that
case, t; = 0 for all i, and line 4 is executed Z?;ll(ti +1) =n-—
1 times. The entire algorithm therefore executes a number of
operations that is proportional to n — 1, i.e., it is a linear function.

e The worst case is when t; is maximal for each iteration.47 In that
case the while loop executes its body for all values between j =

i—1landj = 0,1ie, it performs t; = i iterations for a given i. The
n_1i _ (n=1)n
i=1 " 2
times. In this scenario,

number of executions of lines 5 and 6 is therefore }_
while lines 4 runs Y./ ' (i + 1) = %

the total number of operations is a quadratic polynomial.

We conclude that INserTIONSORT is quadratic in the worst case,
and linear in the best case.4®

ALGO 20

0 i n

‘ sorted values | unsorted values ‘

Figure 31: Loop invariant for INSERr-
TIONSORT.

2]7[1]4]6]5]8]3]
i] key
2]7]1]4]e[5]8]3]
i key
(12]7]4]e[5]8]3]
1 key

(1[2]4]7]6[5]8]3]
N key
(1]2]4]e]7[5]8]3]
i key
(1[2]4]5]6[7]8]3]
i key
(1]2]4]5]6[7]8]3]

key

[1[2]3[4]5]6[7]8]

Figure 32: Running INSERTIONSORT
on an example. For each iteration the
purple arrows represent the assign-
ments on lines 2 and 77, while the blue
arrows are those from lines 5.

45 Another option worth investigating
is to locate the position to insert with
a binary search, and then shift all
values at once using memmove () or
equivalent.

4 For this to occur, key (which contains
Ali]) must always be larger or equal to
Ali — 1], ie., A must already be sorted.

47 This happens when key is smaller
than all values in A[0..i — 1] and the
while loop stops when j < 0.

48 Can you guess how INSERTIONSORT
behaves on the average? See page 21.

Average-Case Analysis

Knowing the worst and best case complexities of some algorithm is
important, but it does not really tells us how it behaves usually. This
is where an average analysis can be helpful: if possible we would
like to consider all possible inputs of size 1, compute the number

of operations performed on each of them, and average the result.
This procedure is not really practical, because we are usually not
able (or willing) to compute a complexity for each individual case.
Therefore, we resort to statistics and probabilities, making some
hypothesis on the distribution of inputs. Instead of averaging on all
possible inputs, we will also usually consider only different possible
shapes of inputs, maybe with different probabilities.

Let us consider INserTIONSORT from page 20 again, and as-
sume for simplicity that all the values in the array A are different.
Although the two arrays of Figure 33 are different, from the point of
view of the sorting algorithm they correspond the same input order
and they can be sorted with the exact same operations.

So instead of averaging INserTIONSORT over all inputs of size
n, we will only consider all possible input orders. Each order can
be given as a permutation 7 = (711, 712, ...,7,) of {1,2,...,n},
and there are n! such permutations possible. For instance, the input
order of the two arrays in Figure 33 corresponds to the permutation
(2,7,1,4,6,5,8,3).

Given a permutation 77, we say that (i, j) is an inversion if i < j
and 7t; > 7t;. For instance, the permutation (2,7,1,4,6,5,8,3)
has 11 inversions: (1,3), (2,3), (2,4), (2,5), (2,6), (2,8), (4,8),

(5,6), (5,8), (6,8), and (7, 8). Note that the sorted permutation
(1,2,3,4,5,6,7,8) contains no inversion, while the reverse permu-
tation (8,7,6,5,4,3,2,1) contains n(n — 1) /2 inversions49. At every
iteration i of INseRTIONSORT, When ¢; values are shifted right to
insert A[i] to their left, exactly ¢; inversions are canceled. The total
number of executions of line 5 of INSERTIONSORT, i.e., Zz’?;ll t;is
therefore equal to the number of inversions in the input array.>°

Back to our average-case analysis. To count how many times line 5
will be executed on average>' we only need to know the average
number of inversions in a permutation of size n. For each permu-

, 7T, ..., TTy) that contains the inversion (i, f),
7,) that does not
contain this inversion. This one-to-one mapping means that each

tation (71, ..., 7, . ..
there exists a permutation (7(1, ey Ty Ty ey

inversion (i, j) has exactly % chance to occur in a random permuta-
tion.>* The expected number of inversions in a random permutation
is therefore 1 (}), that is the number of possible inversion multiplied
by their probability to occur.

We conclude that on the average case, lines 5 and 6 are executed
%(g’) = % times>3, which is just half of our worst case scenario.
The average number of operations of INSERTIONSORT is therefore a

quadratic function.

ALGO 21

2[7]1]4]6[5]8]3]

[1[2]3[4]5]6[7]8]

l4]10[2]6]9]8]11]5]

12]4]5]6]8]9]10/11]

Figure 33: Two different arrays that
have the same input order will be
handled similarly by the sorting
algorithm.

49 This is the maximum number of per-
mutations. Indeed, every permutation
is a pair (i, j) satisfying i < j. There
are n(n — 1) pairs, and half of them
satisfies i < j.

5° We counted 11 inversions for
(2,7,1,4,6,5,8,3), and you can check
that there are indeed 11 blue arrows on
Figure 32 (page 20).

5 We should write this as E[Y.7],
that is, the expected sum of all t;s.

52 Because half of all the n! existing
permutations have the inversion (i, j),
and the remaining half does not.

53 The average number of executions of
line 7 is left as an exercise to the reader.

BINARYSEARCH

So far we have studied two iterative algorithms, but we should also
know how to deal with recursive algorithms. As a very simple ex-
ample, let us consider BINARYSEARCH.

This takes a sorted array A[b..e — 1], a value v, and returns the
index where v is in A, or where it should be in case it is not.

BinArRYSEARCH(A, D, ¢,0)

1 ifb < ethen

2 m<+ | (b+e)/2]

3 if v = A[m] then

4 return m

5 else

6 if v < A[m] then

7 return BINARYSEARCH(A, b, m, v)
8 else

9 return BINARYSEARCH(A, m + 1,¢,0)
10 else

11 return b

The algorithm first checks whether the middle value A[m] is
equal to v, otherwise it looks for v recursively in either A[b..m — 1] or
Am+1.e—1).

Let us write n = e — b for the size of the array, and S(n) for
the number of calls (including recursive calls) to BINARYSEARCH
needed to locate a value in the worst case. Clearly S(0) = 1 because
calling BINARYSEARCH with b = e will return immediately. For
n > 1, the worst-case scenario is when the value is never found, and
the recursion always occurs on the larger of the two halves. Since
one value has been removed, these halves have length | (n —1)/2|
and [(n —1)/2] = [n/2], and the latter is the larger one. Therefore,
in the worst case, the number of calls to BINARYSEARCH satisfies

1 whenn =0,
14+5({n/2]) whenn > 1.

You can actually solve this recursive equation (i.e., find a formula
for S(n)) as if you had to replace a recursive implementation of this
function (Figure 35) by an iterative version. Every time S is called
recursively, its argument is divided by two, and 1 is added to the
result. We could do this in a simple loop, as in Figure 36. So S(n) is
equal to 1 plus the number of times we need to perform an integer
division of n by 2 to reach 0. This integer division is similar to a right
shift by one bit, so S(n) is equal to 1 plus the number of bits needed
to represent n.54 In other words:

S(n) =2+ |log,(n)] ifn >1, and S(0) =1

From this formula, we have a pretty good idea of the behavior of
BinarRYSEARCH. Since the number of operations performed dur-
ing each of these calls can be bounded by some constant c, the run
time of BINARYSEARCH cannot exceed ¢ X S(n) in the worst-case
scenario.>®

ALGO 22

BinarYSEARCH(A,0,8,7) :

b m e
12]|4]5]6]8]9]10[11]

BIIZIARYSEARCH(A,O,4,7) :
m e
12]4][5]6]8]9]10[11]
BiNarRYSEARCH(A,3,4,7) :

]2|4|5|b2|88|9|10|11\

BINARYSEARCH(/‘}),4,4,7):
12]4][5]6]8]9]10[11]

return 4

Figure 34: Recursive call to BiINaARY-
SearcH showing the evolution of b
and e (and the calculated m) when
searching for the value 7 in the array.

unsigned s (unsigned n)
{
if (n == 0) return 1;
return 1 + s (n/2);

}

Figure 35: Straightforward, recursive
implementation of S(#).

unsigned s (unsigned n)
{
unsigned res = 1;
while (n != 0)
{
++res;
n /= 2;
}

return res;

// same as n

}

Figure 36: Iterative implementation of
S(n).

54 The number (110010), = 25 +2% 421,
needs 6 bits, because its left-most 1-
bit is the number 5 (counting from
0). Wehave 2> < m < 2% hence

5 < log,(m) < 6. More generally,
the number of the left-most 1-bit in
the binary representation of any non-
negative integer m is |log,(m) |, and
since bits are numbered from 0, the
number of bits needed to represent m
inbase 21is 1+ [log,(m)].

5 Later, using notation introduced on
page 23 we shall write that BINARY-
SearcH is a O(logn) algorithm for this
reason.

Definitions for Big-®, Big-O, and Big-Q) Notations>®

When we computed the number of operations performed by SELEc-
TIONSORT (page 19) we concluded its run time should be a polyno-
mial of the form an? + bn + ¢, and after running some experiments
we even actually computed the values of a, b, and c. Of course these
coefficients will be different if the same code is compiled differently,
or executed on a different computer. However, the shape of the func-
tion an? + bn + c is independent of these implementation details: the
run time of SELECTIONSORT has to be a second-order polynomial.
Most importantly, when 7 tends towards co the most important term
in this function will be an? and the bn + ¢ part will be negligible. We
like to remember SELECTIONSORT as a quadratic algorithm, because
n? is the dominant term in its complexity function.

The ©, O, and () notations help making calculations using these
dominant terms without bothering with all the implementation-
related constants like 4, b, and c.

e f(n) € ©(g(n)) expresses the fact that f(n)’s asymptotic behav-
ior57 is comparable to g(n), up to some multiplicative factor. For
instance an? + bn + ¢ € @(n?). We say that SELECTIONSORT'S
complexity is @(n?).

The formal definition of f(n) € ©(g(n)) states that there must
exist two positive constants c¢; and c; so that f(n) is bounded
below by ¢1¢(n) and bounded above by cp¢() for large values of
n. This is illustrated by Figure 37.

O(g(n)) = {f(ﬂ)

de1 > 0,3cp > 0,3dng € N,
Vn > ng, 0 < c1g(n) < f(n) < cog(n)

o f(n) € O(g(n)) expresses the fact that f(n)’s asymptotic behav-
ior is dominated by g(n), up to some multiplicative factor. For
instance, INSERTIONSORT’s complexity5® can range from linear
to quadratic depending on its input, so we can say it is in O(n?),
meaning its order is at most quadratic.

O(g(n)) can be defined as the set of all functions whose magni-
tude is bounded above by cg(n) for some ¢ > 0 and large n:

O(g(n)) = {f(n) [3c >0, 3ng € N, ¥ > ng, |f(n)| < cg(n)}

e f(n) € Q(g(n)) expresses the fact that f(n)’s asymptotic behavior
dominates g(n), up to some multiplicative factor. For instance,
INSERTIONSORT’s complexity is in Q(n) since it is at least linear
but may be larger.

Q(g(n)) can be defined as the set of all functions bounded below
by cg(n) for some ¢ > 0 and large n:

Q(g(n)) ={f(n)|3Ic>0,3Ing €N, Vn >ngy, 0 <cg(n) < f(n)}

These definitions imply that ®(g(n)) = O(g(n)) N Q(g(n)).

ALGO 23

% Those are sometimes called Landau’s
notations, although what Landau really
invented was the small o0 notation. For
some history about the notations, read
“Big Omicron and Big Theta and Big
Omega” by D. Knuth.

57 i.e. when n — o

4 c28(n)

Figure 37: f(n) € ©(g(n)): after some
ng the function f(n) is bounded by
two copies of g(n) with different scale
factors.

5 cf. page 20

Figure 38: f(n) € O(g(n)): after some
np the function | f(n)| is bounded above
by cg(n) for some constant c.

A f(”)

Figure 39: f(n) € Q)(g(n)): after some
np the function f(n) is bounded below
by cg(n) for some constant c.

https://danluu.com/knuth-big-o.pdf
https://danluu.com/knuth-big-o.pdf

ALGO 24

Properties of Big-©, Big-O, and Big-C) Notations

Although ©(g(n)), O(g(n)), and Q(g(n)) are defined as sets of 5 Note that this equality really goes

functions, we often abuse the notation to mean one function in this set. one way only: in this context the
For instance, we would write @ (1) + @(n?) = @(n?), which we can notation /=" works like the word "5
in English. For instance, “®(n) =

read as “any linear function added to any quadratic function is a quadratic O(12)"" means that any function in

function’’59, although a more rigorous way to write this would be ©(n) is in O(n?), but the reverse does
2 2 not hold.
{f(n) —|—g(?l) | f(n) € @(Tl), g(n) € ®(n)} < ®(n) ¢ Since we are concerned with a
With the above convention in mind, we have the following simpli- number of operations performed by
fications, where f(n) and g(n) are positive functions® and A > 0is some algorithm, we will (almost)

always have positive functions, and

a positive constant: they will usually be increasing.

A =0(1) A=0(1)
f(n) = 0©(f(n)) f(n) = O(f(n))
O(f(n)) +0©(g(n)) = O(f(n) + (1)) O(f(n)) +0(g(n)) = O(f (n) +g(n))
O(f(n) +g(n)) = O(max(f(n),g(n))) O(f(n) + g(n)) = O(max(f(n),g(n)))
O(f(n))-©(8(n)) = O(f(n) - g(n)) O(f(n)) - O(g(n)) = O(f(n) - g(n))
©(Af(n)) = O(f(n)) O(Af(n)) = O(f(n))

These equalities, which can be proved®! from the definitions of ® 6 Do not trust me, try it.
and O given on page 23, hold for () as well. Following these rules we
have that 4n% 4+ 3n + 1 = @(4n* + 3n + 1) = O(4n?) = O(n?), but we
can generalize this to any polynomial: an* + a4 an
ag = O(nk).

Things get a little fancier when we combine ®, O and (). For
instance, we have @(n?) + O(n?) = @(n?) because the sum of a
quadratic function with a function that is at most quadratic will al-
ways be quadratic, and we have @(n?) + Q(n?) = Q(n?) because the
sum of a quadratic function with a function that is at least quadratic
will be at least quadratic.

When lim;; LZ) = / exists, we can use its value to decide
whether f (1) belongs to ®(g(n)), O(g(n)), or Q(g(n)):

if lim flm) _ ¢ >0 then f(n) =0(g(n))

nveo g(n)
i Jim TS =0 then f(n) = O(g(n)) and £ () # ©(g(1)
) _
it Jim DU o then f(n) = g() and £(n) 7 ©(g(1)

Note that lim;;—;eo (—"; = 0is the definition f(n) = o(g(n)). We

g(n
actually have o(g(n)) C O(g(n)) \ ©(g(n)). Similarly, people oc-
Casionally write f(n) N w(g(n)) when limyco @ :. o, S0 that Figure 40: Relation between o0(g (1)),
we have f(n) = o(g(n)) <= g(n) = w(f(n)) just like we have O(3(n)), ©(g(n)), Ag(n)), and
f(n) =0(g(n)) <= g(n) =Q(f(n)). w(g(m)). If the limit £ = lim,, 0 {2
See Figure 40 for a Venn diagram showing how these different exists, f () belongs to one of the round
classes.

sets relate to each other.

Exercises. 1. Show that 1 + sin(n) + n is in ©(n). 2. Show that for
any a and any b > 0, the function (1 + a)? is in @(n?). 3. Show that
n+ nsin(n) is in O(n) but is not in @(n). 4. Show that 2n + n sin(n)
is in ®(n). 5. Prove O(log; n) = O(log;n) forany i > 1and j > 1.

http://en.wikipedia.org/wiki/Venn_diagram

Usage of Big-®, Big-O, and Big-C) Notations

Let us consider again SELECTIONSORT®? and show how to annotate
it with these notations to derive its complexity.

SELECTIONSORT(A, 1)
1fori< 0ton—2do O(n)
2 min i O(n)
3 forj+i+1ton—1do | O(n?)
4 if A[j] < A[min] Q(n?)
5 min < j O(n?)
6 A[min] & Ali] O(n)
o)

For each line, we essentially make the same computations as
before: we know that lines 1, 2 and 6 are executed n — 1 times, which
is a linear function, so we simply write ®(n). Also, we know that
lines 3 and 4 will be executed Z;.:Oz n — i — 1 times, but we need not
compute this sum precisely. Summing a linear function between
a constant and 7 is like integrating®3 a linear function between a
constant and #: it will give a quadratic function, so we simply write
©(n?). Finally, line 5 can be executed as many times as line 4, but it
could be executed less, so we write O(1?) to indicate that this is an
upper bound. Now the complexity of the SELECcTIONSORT is simply
the sum of the complexity of all its lines: @(n) + @(n) + O(n?) +
O(n?) + O(n?) + O(n) = O(n?). We write that SELECTIONSORT
runs in @(n?), or that its time complexity®4 is ®(n?). We shall often
write T(n) = @(n?) instead of the time complexity is ®(n?).

We can use similar annotation on INsErRTIONSORT®5 and con-
clude that its complexity is O(n?):

INSERTIONSORT(A, 1)
1 fori<1ton—1do O(n)
2 key + Ali] O(n)
3 jei—1 O(n)
4 while j > 0 and A[j] > key do | O(n?)
5 Alj+1] < Alj] O(n?)
6 jeji—1 O(n?)
7 Alj+ 1] + key O(n)
O(n?)

Such annotations can also be used with recursive algorithms
(such as our presentation of BINARYSEARCH), but they produce a
recursive equation that the complexity function must satisfy, and we
will explain how to deal with those later.%®

ALGO 25

2 cf. page 19

% ¢f. page 14

% When people say just complexity
they usually mean time complexity,

i.e., a class of functions like ®(n?) or
O(n®), into which that function giving
the run time of the algorithm for an
input of size n (or equivalently the
number of operations performed)
belongs. Another complexity that can
be studied is the space complexity: how
many extra space does the algorithm
require to process an input of size n.
SELECTIONSORT only needs a constant
amount of additional memory (for
the variables i, j, and min) regardless
of n, so its state-space complexity is
S(n) =0©(1)

% cf. page 20

% Starting on page 28.

A Bestiary of Common Complexity Functions

We will often compare algorithms with different time complexities,

saying, for instance, that a @(n?) algorithm is better than a @(n?) al-

gorithm.®7 To visualize how far apart different complexity functions

are, consider Table 2 at the bottom of this page. It assumes we have a

computer that can execute 3 x 10° operations per second®® and con-

siders many complexity functions we will encounter later. This table
assumes a precise count of operations, like 1, not a complexity class
like ©(n), so just keep in mind that an algorithm with complexity
©(n) should have a run time more or less proportional to what the
table gives in the n column.

Here are some algorithms that illustrate each complexity class:
©(n) is the cost of computing the minimum or maximum value in

an array of size n. It is also the worst-case complexity of searching

a value in an unsorted array.®

O(logn) is the worst-case complexity of searching a value in a
sorted array using BINARYSEARCH.7? It is also the worst-case
complexity of searching a value in a balanced binary search tree.

O(nlogn) is the typical complexity of a good sorting algorithm that
relies on comparisons to sort values.”*

@(n?) is the complexity of SELECTIONSORT’? on an array of size 7,
or the complexity of adding two matrices of size n x n.

@(n3) is the complexity for the naive’3 algorithm to multiply two
matrices of size n x n. You probably do not want to use it to
multiply two 100000 x 100 000 matrices.

O(n'82(7)) is the complexity of multiplying two 1 x n matrices
using Strassen’s algorithm?”4. Note that log,(7) ~ 2.81 so even if
the difference between 3 and 2.81 is small, you can appreciate the
difference between n® and n?8!.

©(2") arises naturally in many problems that enumerate all sub-
sets of n elements. For instance, the determinization of a n-state
finite automaton is an O(2") algorithm, because it constructs an
automaton that contains 2" states in the worst case.

ALGO 26

7 Note that as soon as we use the ©,
O, or Q) notations, we are discussing
only about the asymptotic complexity,
i.e., whenn — oo. It would be wrong
to assume that an @ (n?) algorithm is
always better than a @ (%) algorithm,
especially for small values of n. See for
instance Figure 27 on page 18.

8 If we assume that one operation is
executed in one CPU cycle, we can
think of it as a 3GHz computer.

% Because it is @(n) in the worst case,
we would write that the search of

a value in an unsorted array can be
implemented by a O(n) algorithm.

7° Likewise, we would write that Bi-
NARYSEARCH is a O(log n) algorithm.
Note that we do not specify the base
of the log when writing O(log 1),
O(logn), or Q(log n) because all log-
arithm functions are equal up to a
constant factor.

7 e.g., MERGESORT, page 28.

72 cf. page 19
73 The one that implements
cij = Yk aikbyj as a triple loop.

74 a clever way to recursively express
such a product using 7 products of
sub-matrices of size § x 5

Table 2: An algorithm that requires
f(n) CPU cycles to process an input of
size n will execute in f(n)/(3 x 10%)
seconds on a 3GHz CPU. This table
shows run times for different f and n.

input number f(n) of operations to perform

size n log, n n nlog, n n? n'082(7) n’ 2"
10! 1.1ns 33ns 1l.1ns 33.3ns 0.2ps 0.3 s 0.3 ms
10? 22ns 33.3ns 0.2us 3.3us 0.1ms 03ms 13x108 vy
10° 33ns 03ps 33pus 0.3ms 88.1ms 0.3s 1.1 x 10%% y
10* 44ns 33us 44.2ps 33.3ms 56.55 55min 6.3 x 10302y
10° 55ns 333 ps 0.5ms 3.3s 10.1h 3.8d
106 6.6ns 03ms 6.6ms 5.5 min 0.7y 10.6y
107 7.8ns 33ms 77.5ms 9.3h 4738y 10570.0y
108 89ns 333ms 09s 28.6d 30402.1y

10° 10.0ns 0.3s 10.0s
1010 11.0ns 3.3s

10.6y

1.8min 1057.0y

Merging two Sorted Sub-Arrays

The MEeRrGE procedure will be used on next page to build MerGE-
SoRrrT, a better sorting algorithm than what we have seen so far.
MEeRrGE takes an array A and three indices i, j, and k, such that the
values in the sub-array A[i..j — 1] are sorted (in increasing order),
and the values in A[j..k — 1] are also sorted. The goal is to reorganize
all these values so that Afi..k — 1] is sorted (Figure 41).

MEeRrGE(A,1,j, k)
1 L+« 0(1)
2 rj 0(1)
3 forb«itok—1do O(n)forn=k—i
4 ifr=kor (¢ <jand A[(] < A[r]) | ©(n)
5 B[b] < A[/] O(n)
6 C+—0+1 O(n)
7 else
8 B[b] « Alr] O(n)
9 rr+1 O(n)
10 Ali.k—1] < B[i.k—1] O(n)
©(n)

The procedure works in two steps. First, lines 1—9, a temporary
array B is filled with the sorted values, then, on line 10, the part of A
that we had to sort is overwritten with the contents of B. This array
B is supposed to be at least as large as A.

The actual merging, in lines 110, is done using three indices: ¢
(for left) points to the smallest unused value of A[i..j — 1], r (for
right) points to the smallest unused value of A[j..k — 1], and b points
to the current entry of B to fill. B is simply filled from left to right,
with the smallest value between A[¢] and A[r|. Figure 42 shows an
example with the various involved indices.

Of course at some point the value of one of the two sub-arrays
will all be used: then either ¢ will reach j, or r will reach k. In these
cases, the extra conditions on line 4 ensure that the remaining values
will always be taken from the other sub-array.

If we use n = k — i to denote the size of the range to sort, the
complexity of MERGE is quite straightforward to establish. The loop
on line 3 performs exactly 7 iterations, so lines 3 and 4 both account
for ©(n) operations. Lines 5, 6, 8, and 9 taken individually are each
executed at most 1 times”5, so we write O(n). Finally line 10 is a
trap: it is actually copying n values from B to A, so it has to performs
©(n) operations.

The total complexity is @(n): merging two sorted sub-arrays can
be done in linear time.

ALGO 27

i j k
===
iMERGE(A,i,j,k)l
i k
i —m
Figure 41: MERGE(A, 1,], k) takes two

consecutive sorted sub-arrays Afi..j — 1]
and A[j..k — 1] reorder the entire range.

i j k
A I1|3|;1|7I2|5|6|8I |

r

s Jafefs] [[[]]

b

Figure 42: MERGE on an example, after
the third iteration of its main loop. The
arrows show previous executions of
lines 5 or 8.

75 In fact lines 5 and 6 are necessarily
executed j — i times, while lines 8 and
g are executed exactly k — 7 times, so
taken together these two groups of
lines are executed n times. We could
therefore lump all these four lines into
a big ®(n) but it would not change our
result.

MERGESORT

“Divide and conquer algorithms’'7® are designed around the following
idea: when faced with a complex problem, try to divide the problem
in smaller sub-problems that are easier to solve (this is the divide
step), and once these sub-problems are solved, use their solutions

to construct a solution to the large problem (the conquer step). The
division into smaller problems is usually done recursively until the
problems are so small that their solutions are obvious.

The MErRGESORT algorithm follows this idea: when given an
unsorted array of size n > 1, it divides it into two unsorted arrays
of size n/2 and recursively sorts those.”7 Once the two halves are
sorted, the complete sorted array is built using the MERGE proce-
dure described on page 27. Of course the recursive calls to sorts the
arrays of size n/2 will probably divide the arrays into two arrays of
size n/4. Eventually the recursion will stop on arrays of size 1: those
are already sorted!

Here is the pseudo-code for MERGESORT. We assume that A, the
array to be sorted between indices i (included) and j (excluded),
will be modified in place. Figure 43 illustrates it.

MERGESORT(A, i, k) T(1)
1 ifk—i>1 0(1)
) j e V +kJ

2
3 MERGESORT(A4, 1,)
4 MERGESORT(A, J, k)
5 MEeRrGEe(A,1,j, k)

(n
(1

(1
(L
(r
(n

Let n = k — i be the size of the array to sort, and let T(n) denote

,n>1

@ 9o

1)
1)

© ==
— NIR NIR

the time complexity of MERGESoORT. By looking at the pseudo-code,
we can see that when n = 1, only the first line is executed in constant
time, so T(1) = ©(1). Whenn > 1, the first two lines cost ©(1);
then we have two recursive calls, one on an array of size [%J , and the
other on an array of size [5], those cost T(|%]) + T([5]) operations;
and finally we call MERGE on an array of size 1, which we know
costs O(n). The O(n) of line 5 dominates the ®(1) of lines 1 and 2,
so the complexity T(n) is a function that satisfies

T(n) = o(1) ifn=1
T([3]) +T(15]) +©(n) else

From these constraints, we can find what complexity class T (1)
belongs to. Can you guess the solution here? We will see different
ways to solve this type of equations on the following pages.

Note that in practice we also have T(2) = ©(1) and T(3) = ©(1)
because the number of operations needed to process a fixed-size
input can always be bounded by a constant. So we usually write

ro = ([2]) +7([3]) + 000

without mentioning that T(n) = ©(1).

ALGO 28

76 We will discuss this class of algo-
rithms in more details later.

77 Obviously this is a problem when 7 is
odd, since the size of an array must be
an integer. So in practice we have one
sub-array of size | § | and the other of

sizen— 5] =[%].

k

a7 TiTaTel5 5]3]

[2][7]1]4] | [e]5]8]3]

[27]|[1]4]|[e]5]|[8]3]

2][7][x][4][e][5]|8][3]

2AR2R AR ARRAERRAR

2][7][x][4][e][s]|8][3]

[217]|[1]4]|[5]e]|[3]8]

[1]2]4]7]]| [3]5]e]8]

[1]2[3]4[5]e[7]8]

Figure 43: Running MERGESORT on

an example. Each arrow represents one
call to MERGESORT on the unsorted
array above the arrow, and producing
the sorted array at the bottom of the
arrow. The two recursive calls are
pictured on the sides of the arrow.

Exploring Recurrence Equations

Let us first consider recurrence equations that do not involve the ®,
O, Q) notations. For instance, let M(n) denote the number of times
line 4 of MERGE (page 27) is executed while running MERGESORT
(page 28) on an array of length n. Since each call to MERGE on a
sub-array of length 1 executes line 4 exactly n times, we have:

0 ifn=1

M(n) = M([2])+M(|2]) +n forn>2

At first, the mix of [-] and |- | might look intimidating. One can
wonder if it would not be easier to solve equations such as

Mﬂoor(”) = 2]\/Iﬂoor I_%J)
)

(with Mﬂoor(l) =0
or Mceil(n) = 2]\/Iceil([%] =0

+n
+n with M;(1)

We can write a small program (Figure 44) to compute the first val-
ues from these functions and plot them (Figure 45 on this page, and
Table 3 on next page). What can we make from this plot? First, we
obviously have Mg, (1) < M(n) < M;(n) and this is easy to prove
from our definitions. Then, these three functions coincide on values
of n that are powers of 2: this should not be a surprise as [-] and |- |
are useless in this case. If n = 2™, solving any of the these equations
amounts to solving:

M@2™ =2M(Q2" 1Y) 42" if m > 1, and M(2°) =0

M(Z”’) M(zm—l)

Dividing everything by 2™, we have =57~ = —5=— + 1, and we

can iterate this definition until we reach M(2°):

m@E™ _ Mm@ _ M@E"2) — M@ — = M)
2 T T pm—1 +1= om—2 +2= Dm—3 +3=-= 20

So M(2™) = m2™ and since m = log, n it follows that M(n) =
nlog, n, but only if n is a power of two. How far is nlog, n from
M(n)? After writing another small program, we can plot Figure 46:
M(n) appears closer to 1log, n than Mooy and M are. From the
same figure, we also easily see (this is not a proof) that all three
functions satisfy 3nlog,n < M(n) < 2nlog, n, which means that
they are all in ©(nlogn).

We will see later”® that as long as all we want is a complexity class
(such as ©(nlogn)), we can usually ignore the [-] or |- | functions
in this type of recurrence equations.

However, if we need an exact solution these [-] or || functions
do matter. Figure 45 leaves no doubt about that. On next page, we
show how to compute an exact solution for M(n).

ALGO 29

#include <stdio.h>

unsigned m(unsigned n)

{
if (n == 1)

return 0;

return m(n / 2) + m(n - n/2) + n;

}

unsigned m_floor (unsigned n)

{
if (n == 1)

return 0;

return 2 * m_floor(n / 2)

}

unsigned m_ceil (unsigned n)

{
if (n == 1)

return 0;

+ n;

return 2 * m_ceil(n - n / 2) + n;

}

int main ()

{

for (unsigned n = 1; n <= 256;

printf ("%5u %$5u %5u %$5u\n’,
n, m_floor(n),
m(n), m_ceil(n));

}

Figure 44: Computing M(n), Mg (1),

and M,;(n) to draw Figure 45.

2,000 4

1,500 -

1,000 -

500

0,

—~— M
/\/M

’\V‘N%wr

132 64

128

256

Figure 45: Plot of M(n), Mg, (1), and
M1 (1), as computed in Figure 44.

e Mceil(”)/nlog2n
—~— M(n)/nlog,n
- Mﬂoor(”)/nlogZ n

1 256

1,024

2,048

n

Figure 46: The ratio between the three
M functions, and nlog, n.

78 of. page 31

n

++n)

Solving Recurrence Equations by Differentiation

Let us consider the recurrence M from previous page:

0 ifn=1

M(n) = M([3])+M(|3])+n forn>2

We will solve this equation by calculating U(n) = M(n+1) —
M(n) and then realizing that U(n) satisfies a recurrence equation we
have already seen previously.

Notice first that 4] = | 24! |, so we can rewrite M(n) using only

M
Mmn+1)-Mn) =M

L)
M) = na (|52)+ m(|5])
zx/f(n+1)_1\/1<_”;r2 >+M(V;1D+n+1
M(n+1) — M(n) = <_”er2 >—M(LZJ)+1
(

Now if we let U(n) = M(n + 1) — M(n) we have

2 ifn=1

s U(ls))+1 ifn>2

Do you recognize this equation? For any n > 1 this definition of
U(n) is the same as the definition of S(n) from page 22, so we can
conclude that U(n) =2+ [log, n].

Now, since we have U(n) = M(n + 1) — M(n), it follows that

M(n)=M1)+U()+UR)+UQB)+---+Un-1)

1<i<n
M(n) —KX (24 [logy 1))
M(n) = (—1)+1<Z (14 [log,i])

And this is a sum we studied on page 15:
n—1
Z (14 [log,i]) =n+1+nllog,(n—1)] — 2llogy(n—1)]+1
i=1

So we can conclude?? that

0 ifn=1

M(n) =
() 2n +n|log,(n —1)| —2l81=DI+1 iy > 2

ALGO 30

n Mﬂunr(n) M(”) Mceil(n)
1 0 0 0
2 2 2 2
3 3 5 7
4 8 8 8
5 9 12 19
6 12 16 20
7 13 20 23
8 24 24 24
9 25 29 47
10 28 34 48
11 29 39 51
12 36 44 52
13 37 49 59
14 40 54 60
15 41 59 63
16 64 64 64

Table 3: The first values of Mg, (1),
M(n), M (n), as defined on page 29.

791t is very easy to forgeta |- | or a little
—1 somewhere while making this kind
of calculation. To detect such mistakes,
I usually evaluate both formulas (here,
the definition of M(n) at the top of the
page, and the one at the bottom) on a
handful of values, and check that they
are the same (here, the values should
be those given by Table 3).

Master Theorem for Recurrence Equations

The following theorem can be used to solve many (but not all) recur-
rence equations derived from recursive algorithms, typically those
obtained from divide-and-conquer algorithms.°

Theorem 1 (Master Theorem). Consider a recurrence equation such as

T(n) =0(1) forn < ng
aT

n
(% +00) +fm)
witha >1,b > 1,and ng > 0.
1 Iff(n) = O(”(bgb”)_g)for some & > 0, then T(n) = @(n'°8 7).
2. If f(n) = ®(”logba), then T(n) = @(nlogb‘Z logn).

3. If f(n) = Q(n(l"gb“)“)for somee > 0, andifaf(}) < cf(n) for
some ¢ < 1 and all large values of n, then T (n) = O(f(n)).

4. In other cases®*, the theorem does not apply.

forn > ng

Figures 47-49 illustrate this theorem by picturing the work f (1)

performed by each recursive call as a rectangle.

Examples:

e T(n) =T([5]) +T(|%])+ ©O(n). This is the recursive equation
for the complexity of MERGESORT, as established on page 28. We
can rewrite it as®?: T(n) = 2T (4 + O(1)) + O(n).

Sowehavea = b = 2and f(n) = ©(n). We compute n'°8:7 =
n1°822 = 51 and we now have to check which case of the the-
orem applies. Is f(n) in O(n'~¢) (case 1), in @(n') (case 2), or
in Q(n'*¢) (case 3)? Obviously we are in the second case since
f(n) = O(n) = O(n'). We therefore conclude immediately that
MEerGESORT has complexity T(n) = @(nlogn).

e T(n) = T([5])+ ©O(1). This is the worst case complexity of
BiNarRYSEARCH (page 22). Wehavea = 1,b = 2,and f(n) =
O(1). n°821 = n% = 1. Again in case 2, we conclude that T(n) =
@(n’logn) = @(logn) for the worst case of BiINarRYSEARCH.3

e T(n) =+/n+3T(n/4). Wehave b = 4, a = 3, and log, 3 ~ 0.792.
We have /i1 = n'/2 = O(n(19843)—¢) if we take for instance ¢ =
0.2. So this is the first case of the theorem, an T(n) = @(n'°843).

e T(n) = n*>+3T(n/4). Same constants, different f(n). This times,
n? = O (n19843)+2) if we take for instance ¢ = 1. Furthermore, the
function f(n) = n? verifies 4f(n/3) < cn? if we take for instance
c=1/2,50 T(n) = O(n?).

O(n)

~ logsn

@(nlog3 -1)

ALGO 31

% Divide-and-conquer algorithms will
typically perform a recursive calls on
sub-problems of size }, and use f(1)
operations to split the problem and
merge the sub-solutions.

8 These are the cases where ¢ or ¢
cannot be found. For instance, if you
consider T(n) = 2T(n/2) + nlog, n,
you can show that nlog, n = Q(n!)
but you cannot find any & > 0 such that
nlog, n = Q(n'**), so the theorem
does not apply.

82 Note how the % 4 O(1) in the theo-
rem accommodates any terms like , or
L %], or even [%2]. This is great news:
no need to worry about integer parts
anymore!

O(n)

~ logs n

Figure 47: If T(n) = 2T(n/3) + ©O(n)
we are in the third case of the theorem:
the work performed by recursive calls
diminishes exponentially fast, so only
the initial ®(n) matters.

Q(n)

~ logs n

Figure 48: If T(n) = 3T(n/3) +

©(n) we are in the second case of the
theorem: the total work performed

at each level of the recursion is the
same, so the complexity ®(n) has to be
multiplied by ©(log n).

8 So we can say that BINARYSEARCH is
O(log n) in general.

Figure 49: If T(n) = 4T(n/3) + ©(n)
we are in the first case of the theorem:
the total work performed at each level
increases exponentially, and the work
performed on the last level dominates
everything else.

ALGO 32

Establishing Upper Bounds by Mathematical Induction

Here we review a way to prove that T(n) = O(f(n)) when you have
some recursive equation for T(n) but do not want to (or cannot) use
the master theorem. However, like all inductive proofs, you need to

know®4 the solution (i.e., f(1)) before you can start the proof. 8 Guessing the solution is also an
To prove the T(n) = O(f(n)), we need to show that there exists option: sometimes the recurrence
equation looks like some equation you
some constant ¢ > 0 and some ng € IN such that for values of n have already solved, or some equation
larger than 19 we have T(1n) < cf(n).85 Note that once we have a that you would know how to solve,

and it seems legitimate to estimate
that the solution should be be similar.
will still work. In fact, the ability to pick a c large enough is often You would then use mathematical
induction to confirm your guess.

8 This is the definition of T(n) =
O(f(n)), as seen on page 23.

constant ¢ that works, we can decide to use a larger c and the proof

necessary to complete the proof.
Ideally, we make our inductive proof as follows:
1. We write our inductive hypothesis, H, : T(n) < cf(n).

2. We show that Hj,; holds, from some 7y and ¢ we supply.

3. We show that Hj holds for any n > ny, if we assume Hy,, Hy, 11,
...,and H,_.

4. We conclude that T(n) = O(f(n)).
Sometimes we fail at step 3 and we may have to revise our definition
of f(n) before giving up.

= G

0(1) ifn=1
T(|n/2])+0©(1) ifn>1
and we want to prove that T(n) = O(logn).

Example: Assume we have T(n) =

Our inductive hypothesis H, is that T(n) < clog, n. Clearly we
cannot prove Hj because T(1) is a constant necessary larger than
clog,1 = 0. However T(2) = T(1) + ©(1) = ©(1) is a constant
as well, so we can choose ¢ large enough so that T(2) < clog,2 =
¢, and Hj holds. Similarly, T(3) = T(2) + ©(1) = ©(1) is also
a constant, so clearly H3 holds if we keep c larger than these two
constants.

Now for any n > 4 let us assume that Hy, Hs, ..., H,_1 holds and
let us prove H,. By definition of T (1) we have

T(n) =T(|n/2])+06(1)

Since n > 4 we have /2] > 2, so we use hypothesis H|,, 5 :

T(n) < clog, {%J +0(1) <clog, % +0(1)
T(n) <clogy,n — (c—©O(1))

Now we argue that since we can pick c as large as we want, we can
make sure that ¢ — ©(1) is positive. Therefore

T(n) <clog,n

We have proved Hj;, and by mathematical induction we conclude % Exercise: Using the same recursive
hat T(n) = O(1 86 definition of T(n), adapt this method to
that T(n) = O Ogi’l) . demonstrate that T(n) = Q(logn).
It would be nice if it was always that easy!

ALGO 33

When Mathematical Induction on Recurrence Fails

The example from the previous page is a case where the proof goes
well. This is not always the case and sometimes we have to adapt
our induction hypothesis in order to complete the proof.

Consider the recurrence

T(n) = 1 ifn=1
S 2T([n/2)) +1 ifn>1

From our experience, we guess that T(n) = O(n), so let’s try to prove
the hypothesis H, : T(n) < cn for some constant c. Clearly H; is
true. So for any n > 1, let us assume that Hy, ..., H,_1 hold, and use
that to prove Hy:

T(n) =2T(|n/2])+1
sincen > 1, we have 1 < [n/2] < nand can apply H|,,/,|:

T(n) <2|n/2|+1
T(n) <2cn/2+1
T(n) <cn+1

Unfortunately, this last equation does not imply Hj,, so we cannot
conclude our inductive proof.

The trick is to realize that we are just off by a constant, i.e., some-
thing negligible in front of the O(n) bound we are trying to estab-
lish. In order to get rid of this constant, we can introduce one in our
hypothesis. Let us attempt the same proof with Hj, : T(n) < cn — 1.
Hypothesis Hj still hold for a c large enough. Again, for any n > 1,
let us assume that Hj, ..., H},_; hold, and use that to prove Hy:

T(n) =2T(|n/2]) +1

we apply H/Ln/ZJ:
T(n) <2(c|n/2] —-1)+1
T(n) <2c|n/2] -1
T(n) <2cn/2-1
T(n) <cn-—1

Now, this is exactly H},, so by mathematical induction we have
proved that T(n) < cn —1holds for all n > 1. This of course im-
plies that T(n) < cn for all n > 1 and hence that T(n) = O(n).

More Examples of Complexities

Let us apply the techniques we learned so far to different algorithms

and operations on data structures. The presentation of those al-

gorithms and data structures, which you should probably already

know, is just a pretext to practice the computation of complexities.
The next sorting algorithm we study is HEApSorT. It uses a

data structure called heap, which is a nearly complete binary tree (see

below) with some additional constraints.

Nearly Complete Binary Trees

A nearly complete binary tree is a binary tree in which all levels, except
possibly the last, are fully filled, and furthermore, the nodes from
the last level are filled from left to right. Figure 50 gives an example.

A nearly complete binary tree with 1 nodes can be efficiently rep-
resented as an array of n elements, as illustrated by Figure 51: the
array is simply filled by reading the values of the tree one level after
the other, i.e., from top to bottom and from left to right. The require-
ment that a nearly complete binary tree can only have missing nodes
at the end of its last level stems from this array-based representation:
we do not want any hole in the array.

This array-based representation is very space efficient since it
does not need to store any pointer to parent and children. A node
can be referred to by its index i in the array, and the index of its
parent and children can be computed from i. Assuming the number
of nodes (i.e., the size of the array) is known to be 11, we have the
following formulas®7:

LerrCHiLD(i) = 2i+ 1 if2i+1<n
RiguTCHILD(i) = 2i+2 if2i+2<n
Parent(i) = \‘l ; 1J ifi >0

Furthermore, if a nearly complete binary tree has n nodes, we
know it has exactly | 5 | internal nodes and [7 | leaves. These leaves
are necessarily stored at positions | 5 | to # — 1 in the array. This fact
will be used in BurLpHEap®® to work on all subtrees but the leaves.

Heaps

A max-heap is a nearly complete binary tree storing elements in an order
that satisfies the following heap constraint: the value of any node
must be greater than (or equal to) that of its children. A min-heap
can be defined similarly (each node has a value less than that of its
children), but we will only focus on max-heaps from now on.

For instance, the heap of Figure 52 was built from the nearly
complete binary tree of Figure 51 by applying the algorithm Buirp-
Heapr.

Max-heaps have the important property that the maximum value
can always be found at its root. This can be used for sorting.

ALGO 34

each level
is complete
with 2" nodes

N
nodes may only be missing
on the right of the last level

Figure 50: A nearly complete binary
tree has all its levels complete, except
maybe the last one where all nodes are
flush left.

01 23 4567 89
[4[2]8[7[3]4[0]7][9]4]
Figure 51: A nearly complete binary

tree storing integers, and its representa-
tion as an array of integers.

8 The formulas are different if array
indices start at 1 instead of o.

0123456 7 809
[917]8]7]4]4[0]2]4]3]
Figure 52: A (max-)heap storing the
same set of values as in Fig. 51.

HEeapiry and BuiLbpHEAP

The HeaP1ry function is the main building block for the BurLp-
Heap algorithm. Let A be an array of size m storing a nearly com-
plete binary tree. HEAaPIFY takes the index 7 of a node whose left
and right children are already known to be subtrees that satisfy the
heap property, and it rearranges the values of i and its children so
that the subtree rooted in i has the heap property. These conditions
are illustrated by Figure 53.

Note that if the left child ¢ of i satisfies the heap property, its value
Al/] is necessarily the maximum of the left subtree. Similarly, A[r]
is the maximum of the right subtree. If A[i] is already greater than
A[/] and A[r], then the subtree rooted in i already satisfies the heap
property. Otherwise, two of these three values have to be swapped:
bringing the maximum at the top, and possibly destroying the heap
property of one of the children (but this can be fixed recursively).

Heariry(A,i, m)

1 ¢ <+ LerrCHiLD(i) 0(1)
2 7+ RigurCHiLD(i) 0(1)
3 if ¢ <mand A[(] > Ali] | ©(1)
4 g4 O(1)
5 else

6 g4 0(1)
7 ifr<mand Afr] > Alg] | ©(1)
8 g O(1)
9 ifg#i o(1)
10 Ali] < A[g] O(1)
11 HEeariry(A, g, m) ?

Figure 54 illustrates this algorithm on an example. Using HEAPIFY
to turn a complete binary tree into a heap is now quite easy: notice
that all leaves already satisfy the heap property, so all we need is to
call HEAPIFY on the internal nodes, in a bottom-up way. Remem-
ber that the first leave is at position [#/2] in the array, so the last
internal node is just before.

BuiLpHEear(A, n)
1 forifrom |n/2] —1downto0: | ©(n)
2 HEeariry(A,i, n) ?

Figure 55 runs BuriLbpHEAP on the nearly complete binary tree
used as example on the previous page.

ALGO 35

Heapiry(A,i,m)

>

Figure 53: Pre- and post-conditions of
Heapify. The input is a node i whose
children subtrees are already known to
satisfy the heap property. In the output
the entire subtree rooted in i satisfies
the heap property. This implies that
Ali] in the output should be equal to
max(Ali], A[£], A[r]) in the input.

When running Heariry(A,1,11) on
the above tree, A[1] is swapped with
A4] on line 10.

The subtree of 4 is then corrected by
calling HEaP1rY(A,4,11) recursively.

Figure 54: Execution of
HeaP1rY(A,1,11) on an example.
States colored in blue are roots of
subtrees with the heap property.

Figure 55: Running BuiLbHEAP on the
nearly complete binary tree from Fig. 51
produces the heap of Fig. 52.

(4 (4) (@ (@ (@ (9)
OO 2 OO, ONENO 9 ® 7
7 OO @ DOO @ DOO © WOO @ WOO @ WBWO

@9O® @9G @2D® @2D® @@D® Q@O

The Complexity of HEAPIFY

Page 35 presents HEaP1ry and BuiLpHEeaP, but does not give their
complexity.

HEeaPr1FyY contains different execution branches. The most efficient
scenario is obviously when g = i on line 9, because then no recursion

occurs. In this case, HEAPIFY executes in constant time.
For the recursive case, it is instructive to consider different ways
to measure the size of the input.

e Heariry(A,i,m) will only work on nodes that belong to the
subtree rooted in i. So we could use Ty (s) to denote the time
complexity of HEAPIFY on a subtree of s nodes. When HEaPI1FY
recurses into one of the two children of i, how many nodes are
left in the worst case? To answer that, look at Figure 56: because
the last level of a heap is not necessarily full, the left subtree can
actually have twice the numbers of nodes of the right one. The
left subtree can actually have up to [(2s — 1) /3] = 2s/3 4+ O(1)
nodes. We therefore have the following recurrence:

0(1) ifs=1
Th(s) <
Tu(2s/3+0(1))+0©O(1) ifs>1
This is not exactly the form of the Master theorem®9 because of
the inequality. However, we can use the Master theorem to find
that U(s) = U(2s/3 + O(1)) + ©(1) has for solution U(s) =
O(logs), and from that we conclude:

Tr(s) < U(s) = O(logs) hence Tr(s) = O(logs).

e Another option is to express the complexity Ty (h) of HEAPIFY
working on a subtree of height /. Each recursive call reduces the
height by one, so we have Ty (h) < Ty(h —1) + ©(1) until we
handle a leaf with T (0) = ©(1). By iterating this definition, we
easily find that Ty (h) = O(h):

Ty(h) < Tu(0) +©(1) +... +O(1)
Ty(h) < (h+1)O(1) fterms
Tr(h) < ©(h)

Tr(h) = O(h)

Note that these two results, T (s) = O(logs) and Ty (h) = O(h),
are compatible because i = ©(logs) for complete binary trees.9°

We will use both expressions for Ty on next page, to compute the
complexity of BuiLbHEAP.

ALGO 36

x 4 1 nodes
Figure 56: Worst case for the recursion
of HEaPIFY: the left subtree has
slightly more than twice the number of
nodes of the right subtree. If s = 3x +2,
the left subtree has 2x +1 = (2s — 1) /3
nodes.

8 cf. p.31

9 Exercise: Prove that any complete
binary tree of s nodes has a height of
exactly i = |log, s].

The Complexity of BuiLDHEAP

BuiLpHEeaPr(A,n)
1 forifrom |n/2] —1downto0: | ©(n)
2 Heariry(A,i, n) ?

Having established the complexity of HEAPIFY on page 36, we
only need to answer one question before we can give complexity
Tpp(n) of running BuiLpHeaPp: “what is the cost of line 2?”

e We can consider that in the worst case, HEAPIFY runs on a sub-
tree of n nodes. This is the case when called with i = 0 and the
Heariry call then costs Ty(n) = O(logn). It costs less in the
other iterations, but O(log 1) already gives an upper bound any-
way. Since there are |n/2| iterations, the total complexity can be
expressed as follows:

Tgpi(n) = ©(n) + [n/2]0(log)

m line 2
Tsri(n) = ©(n) + ©(n)O(log n)
Tgr(n) = O(nlogn)

However, that is a crude upper bound, because we considered
that all calls to HEaPIFY cost as much as the last one.

e In practice, HEaP1FY is called on many small subtrees where
it has constant cost. For instance, on all subtrees of height 1,
Heariry costs Ti(1) = ©O(1). A more precise evaluation of
line 2 would therefore account for the different sizes of each sub-
tree considered. Let S(h, n) be the number of subtrees of height

in a heap of size n. We can express the complexity of BuiLbHEaP

as:
[log]

Tpr(n) =O(n)+ Y. S(h,n)Tu(h) (10)
=~ =1

line 1

line 2
Indeed: we have S(, n) subtrees of height /1, the call to BuiLp-
Heap costs Ty (h) for each of them, and we are running BuiLp-
HEearp on all subtrees with heights ranging from 1 (the node just
above the leaves) to [logn | (for the root9").

Finding an exact formula for S(h, n) is tricky, but we can establish
the upper bound S(h,n) < n/2" as shown in Figure 57. From that

we have:
|logn] [logn] O(h |logn] h
Y S(hm)Tu(h) < Y. ng)zno Y, o] =0m)
h=1 h=1 2 h=1 2

The trick is to recognize the sum as the start of a series that con-
verges9?, so it can be reduced to O(1). Plugging this in equa-
tion (10), we get:

TBH(I’Z) = @(7’1) + O(Yl) = @(Tl)

A complexity that is both lower (n versus nlogn) and more pre-
cise (© versus O) than our first attempt!

ALGO 37

[log, 1]

Figure 57: The number of subtrees of
height /1 in a complete binary tree of n
nodes without missing nodes on the last
level, can be expressed as the number of
nodes at depth d = [log, n| — h, that
is 21082 7)=" This value is smaller or
equal to logy(n)=h — 3 /2h,

Now if the binary tree is nearly complete
(i.e., it has missing nodes), 1/2" is
still an upper bound of the number of
subtrees with height 5.

So we conclude that S(h,n) < n/ on,

9 See the remark go on p. 36.

92 Start from Z k= 1 which can
= 1—r

be established for any |r| < 1 from

eq. 7 p. 12. Differentiate both sides

w.r.t. 7, then multiply by r to obtain

[ee]
)y krk = % In our case we have
= (1—7)

1 & (1)
r=s and k};ak <§> converges to 2.

HEAPSORT

Sorting an array in ascending order using a max-heap is easy: once
the heap has been built, its topmost value (i.e., the first value of the
array) is the maximum. This maximum should be therefore moved
to the end of the array. If we do that with an exchange, and new
consider only the first n — 1 values to be part of the tree, we are in
the situation depicted on Figure 58: calling HEAPIFY on the root

of this (restricted) tree is all we need to sift up its maximum value.
This can be iterated to sort the entire array: each iteration places one
new value at its correct place, and reorder the remaining heap.

HearSort(A,n)

1 BuiLpHear(A,n) O(n)
2 forifromn—1downtol O(n)
3 Af0] < Aff] ©(n)

4 Heariry(A,0,1)

O(nlogn)?

The complexity of the first three lines of HEaArSorT, should be
quite obvious: we know the cost of BuiLbHEAP from page 37, and
line 3 is a constant-time operation repeated n — 1 times. That leaves
us with the cost of line 4.

The first call to HEaPIFY is done on an array of size n — 1, so its
cost should be Ty (n — 1) = O(log(n — 1))
to what we established on page 36. The following iterations will

= O(logn) according

call HEaP1ry on smaller arrays, so we can still use O(log) as an

upper bound, and claim that the sum of all the these calls will cost

(n—1)O(logn) =0O
It would be legitimate to ask whether we could get a better com-

(nlogn).

plexity bound by being more precise when summing the costs of the
different calls to HEaP1FY like we did for BuiLpHEAP on page 37.
Here the total work performed by all iterations of line 4 is

ETH ZOlogz (Zlogz) :O<logﬁi>
i=1 i=1
= O(log((n —1)")) (11)

Stirling’s formula is a powerful tool to simplify expressions involv-
ing factorials, if you can remember it. We have

nl ~ \/ﬁ(g)n

(For another way to obtain the equivalence on the right, see page 14.)

hence log, (n!) ~ nlog, n.

We can therefore return to equation (11) and simplify it:

=0((n—1)log(n—1)) = O(nlogn)
Unfortunately, this result is not better than our original approxima-
tion. We conclude that HEAPSorT(A, 1) runs in O(nlogn).

Can you explain the fundamental difference between the loops
of BuiLbpHear and HEarSorT? Why is one O(#n) and the other
O(nlogn)?

ALGO 38

After BuiLpHEAP

01234567839
[9]7]8]7]4[4]0[2[4]3]

After A[0] + A[9]

1234567
\3|7|8|7|4|4|0|2|4|9\

After HEarirY(A4,0,9)

0123456789
[8]7]4][7[4]3]0]2]4]9]

After A[0] +» A[8]

01234567839
[4]7]4]7]4]3]0]2]8]9]

After Heariry(A,0,8)

|||I\

0 9
0 9
0 9
7 9
7 9
7 9
7 9
7 9
7 9
7 9
7 9
7 9
7 9
7 9

ANE A A BNE NE NE T NE T RNE RNE NI RN N
2] [[e o] [o o] [o o]l fo o} fo o] [o o} fo o] [o o] Jo o] o o] o o} o o] CXJ

3
3
3
3
3
4
4
4
4
4
4
4
4
4

o
N
w
~
~
~

7171819

Figure 58: Progression of HEAPSORT,
starting from the entire heap.

PARTITION

The ParTiTION algorithm is a building block for QuickSorT. PaAr-
TITION reorders a given range of elements in an array, such that all
the elements in the left-hand side of the range are smaller than those
in the right-hand side as pictured by Figure 59. The resulting range
does not need to be sorted.?3

One way to implement ParTiTION is to choose a value, let’s say
x Alf] and use it as a threshold to decide whether an element
Alv] can belong to the left-hand part (if A[v] < x) or to the right-
hand part (if A[v] > x).94 The following implementation of the
reordering is often described as the “’collapse the walls” technique.
The walls are in fact two indices i and j starting at both ends of the
range, and moving towards each other, exchanging values along the

way.
ParTiTION(A, L, 7)
1 x <« A[(] 0(1)
2 i l—1;jr 0(1)
3 repeat forever O(n)
// find a value that can go to the right-hand side
4 doi<i+1untlAfi] >x o(n)
// find a value that can go to the left-hand side
5 doj+j—1until Afj] <x
// swap the two values unless the walls collapsed
ifj<i O(n)
7 returni+ (i = ¢) 0(1)
8 Ali] < A[j] O(n)

The “repeat forever”” loop might look daunting, but since lines 4
and 5 necessarily update i and j at each iteration of the main loop, it
is guaranteed that eventually j <7 and the algorithm will terminate.

What is less obvious is that there are exactly two ways in which
the algorithm may terminate. Either i = j (in this case A[i] = x), or
i = j+ 1 as in Figure 6o0. It is not possible for i to be larger than j + 1,
because all the values to the left of i are less than or equal to x, so the
loop decrementing j will stop as soon as it passes i.

The algorithm assumes that the range contains at least two values
(r —1 > 2). To argue that the returned value p satisfies ¢ < p < r,
consider what it would take for this to be violated: To have p = ¢,
line 4 should be executed only once, which means that line 5 will
execute until j = i = ¢. However, in this case line 7 will returni + 1
so not /.

Finally, the ©(n) complexity of PArTITION should be obvious after
we realize that because of the “collapsing walls” strategy, the sum of
the executions of lines 4 and 5 is at least n + 1 (if we end with i = j)
and at most n 4 2 (if we end withi = j+1).

ALGO 39

unsorted

p < ParTiTiON(A, Y, T)

0 ¢ p roon
I

unsorted < unsorted
1

Figure 59: Overview of the PArTITION

algorithm. The range A[(..r — 1]

is reordered so that any value in

A[l..p — 1] is less than or equal to any

value in A[p..r — 1]. The value p should

be such that { < p < r, ensuring that

each part is non-empty. Note that the

two parts may have different lengths.

93 Sorting A[(..r — 1] would be one way
to implement ParTiTION(A, £, 7), but it
would be less efficient.

94 Note that elements equal to x can go
to either side; this is on purpose.

4
[4]2]8]7][3[4]0[7][9]4]

VAR j

r

[4]2]8[7[3[4[0[7[9]4]

. je—

[4]2]o0[7]3[4]8]7[9]4]

\»i

<

[4]2]0[4[3]7]8[7[9]4]

\—,»i
J =<

Figure 60: Execution of PARTITION

on an example. In this case, the index
returned is 7, and the algorithm has (by
chance!) reordered the range in two
equal partitions.

QuickSoORT

QuickSoRT consists in recursively calling PArTITION 0On the two
parts created by ParTiTION, until we reach an array of length 1 (that
does not need to be sorted).

QuickSorT(A, ¥4, 1) Tos(1) Tgs(n) forn=r—£>1
1 ifr—0>1 0(1) 0(1)

2 p < ParTiTiON(A, Y, 7) O(n)

3 QuickSort(A, Y, p) Tos(L)? forL=p—/

4 QuickSorT(A,p,r) Tos(n—L)?

Figure 61 shows the effects of the different calls to ParTiTION
occurring while sorting an example array with QuickSorr.

The proof that QuickSorr actually sorts the array can be done
by induction on the length of the considered range. The induction
hypothesis H, is “for any range [{..r — 1] of length r — ¢ = n, calling
QuickSorT(A, ¢, r) will sort all the elements in A[(..r — 1]”.

Clearly H; is true, because a range of length 1 is already sorted
and QuickSort does not modify the array in this case. Consider
some arbitrary n > 1, and assume that H; is true for all i < n. Run-
ning QuickSorT on a range of length n > 1 will execute lines 2—4:
e The result of line 2 is that all values in the range A[(..p — 1] are

smaller than all values in the range A[p..r —1].

o Furthermore, we have / < p < r, which implies that the two
ranges [{..p — 1] and [p..r — 1] have lengths smaller than n and by
hypothesis we can therefore state that after running lines 3 and 4,
the values in A[¢..p — 1] and A[p..r — 1] are sorted.

Combining these two points, it follows that A[¢..r — 1] is sorted after

executing lines 2—4.

Evaluating the complexity of QuickSorrT is less easy, because the
recursive calls on lines 3 and 4 are not necessarily done on ranges
of equal length. The ParTtiTioN function could return any p that
satisfies { < p < r. So if the size of the input range is n = r — ¢, then
after calling PaArTITION, the left part may have a length L = p — /¢
anywhere between 1 and n — 1, and the right part would have the
remaining length n — L (Fig. 62).

It would therefore be tempting to express the complexity as the
solution of

Tos(n) = 0(1) ifn=1
ST 0m) + Tos(L) + Tos(n — L) ifn > 1

Unfortunately that is incorrect, because the above assumes that L
would have the same value in every recursive call: i.e., PARTITION
would always produce a left part of size L. Clearly that is not true.
However, solving this equation can give us some clues about the
possible behaviors of QuickSoORT.

ALGO 40

[4]2]8]7]3[4]0[7]9]4]
)
[4]2]0]4]3[7[8[7[9]4]
>—< (0,5)
[3[2]0f4]4[7][8][7]9]4]
— 0.4)

[0[2]3]4[4]7][8]7]9]4]
(0,2)

[0[2]3]4]4][7]8]7]9]4]
(2,4)

[0]2[3]4]4][7]8]7]9]4]
(5,10)

[0]2]3]4]4[4]7]8]9]7]
(5,7)

[0]2[3]4]4[4]7]8]9]7]
>~ (7,10)

[0]2]3]4]4[4]7][7]9]8]

< (8,10)

[0]2]3]4]4][4][7][7]8]9]

i

Figure 61: Effect of the successive

calls to PArRTITION(A, {,7) during the
recursion of QuickSort(A4,0,10). The
pairs displayed on the side give the
value of £ and r passed to PARTITION.

i

L n—1L
Figure 62: Let us assume that PArTI-
TION always puts L elements in the left
part, and n — L elements in the right
one.

Worst and Best Cases for QUICKSORT

Page 40 ended with a recursive expression of the complexity Ts(n)
of sorting an array of size n, but that equation assumed that the
ParTiTION always created a left part of length L. Let us evaluate
scenarios with different values of L.

e The case where L is always equal to 1 occurs when running
QuickSorT on a sorted array. In this case Tps(L) = ©(1), and
the recursive equation can be simplified to

0(1) ifn=1

TQS(”) B O(n) + Tgs(n —-1) ifn>1

Solving Tps(n) = O(n) 4+ Tgs(n — 1) iteratively95, we find that

Tas(n) = ©(n) + Tos(n —1)
=0(n)+0(n—1)+ Tos(n —2)
=0(n)+0(n—-1)+0(n—-2)+ Tos(n —3)
=0n)+0(n—-1)+0(n—-2)+---+0(1)

n ay n<n+1>>)
= i) =0 i| =0 —<%) =0(n
D (;) (" ()
So QuickSorT needs @(n?) operations to sort a sorted array...9°
Note that the result is the same if L is replaced by any constant.

e Another interesting case would be when L = [n/2], i.e.,, when
ParTITION always cuts the range in its middle. Then we have

Tas(n) = ©(n) + Tos(1n/2]) + Tos([1n/2]).

This is the same equation as for MERGESORT (page 28), so we
know the solution is Tps(n) = @(nlogn).

e Whatif L = n/10? For this 10%-90% scenario the equation is

Tas(n) = ©(n) + Tos(|1/10]) + Tos([91/107]).

Figure 63 shows the shape of the recursion tree: each node is la-
beled by the length of the array passed to Partition. The short-
est branch of the tree is the left one, where the range is always
divided by 10: the height of this branch is log;, 2. The longest
branch is the right one, with height log, , 7 since the range is
(slowly) divided by 10/9 at each recursive call. The work per-
formed by ParTITION is proportional to the value displayed on
each node of this tree, therefore the total cost of QuickSorT is
proportional to the sum of all the nodes of this tree. The sum of
each line of the first log,, 7 lines if this tree is necessarily 7, so
these sum to nlog,, 7. But the algorithm processes more than
that. The total for each remaining line is less than 7, so the sum of
the whole tree is less than nlog;, .4 n. We therefore have

O(nlogyyn) < Tos(n) < O(nlogyy,gn) hence Tos(n) = O(nlogn).

The same result holds if L = 1/10000 or any other ratio.9”

ALGO 41

9 Be careful when doing this type of
iterative computations. It would be
tempting to simplify ©(n) + @(n — 1)
as ©(n) (this is true), then simplify
O(n) +O(n —2) as O(n) (this is true as
well), and continue until we obtain that
Tos(n) = ©(n) (which is incorrect).
What did we do wrong? The number
of terms we summed is not constant:
we can only perform these reductions a
constant number of times.

If you are unsure, it is better to
replace ®(n) by some representative
function of the class, like cn, and solve
F(n) = cn+ F(n —1) instead. Then you
have Tps(n) = ©(F(n))

% This is bad, and it also implies that
this implementation of QuickSorT
behaves badly for ‘nearly sorted”
arrays. We discuss some mitigating
techniques on page 43.

1y
()"

Figure 63: Shape of the tree of the
recursive calls to QuickSorTin a
scenario where the PArTITION always
makes a 10%-90% split.

97 The difference between the bad
cases and the good cases discussed on
this page is whether L is constant or
whether it is proportional to n. The
actual constant or ratio does not affect
the resulting complexity class.

Average Complexity of QUICKSORT

Let us start again from the equation9®
Tos(n) = ©(n) + Tos(L) + Tgs(n — L).

On page 41, we considered some arbitrary (but fixed) expressions
for L to establish the complexity of QuickSorT on some particular
scenarios. However, in practice, L may take a different value in each
recursive call. All we know is that0 < L < n because PArRTITION
guarantees that the left and right sides may not be empty.

To derive an average complexity, assume that L is a random vari-
able taking its value uniformly in {1,2,...,n — 1}. We can therefore
compute TQS, the average complexity of QuickSorT by averaging
the complexity we could obtain for each of these n — 1 different
values, recursively:

n—1
Tos(n) = " i 7 1;1 (©(n) + Tos(L) + Tos(n — L))
n—1 n—1
TQs(n) = @(Vl) + - i 1 <Z TQS(L) + Z TQg(n — L))
=1 =1
n—1
Tos(n) = ©(n) + —— Y Tos(L)

n—17=
To avoid any errors??, let’s replace ©(n) by some representative
function cn. The new function F(n) is such that Tps(n) = @(F(n)):

2

F(n)=cn+ n_IZiF(L)

To get rid of the sum, we first multiply both sides by n — 1 to get rid
of the non-constant factor in front of the sum, and then subtract the
same expression for F(n — 1):

n—1
(n—1)F(n) = (n—1)cn + 2;F(L)

n—2
(n—2)F(n—1) = (n—2)c(n—1) +2L);1P(L)

(n—1)F(n)— (n—2)F(n—1) =2c(n—1) +2F(n — 1)
(n—1)F(n) =2c¢(n—1)+nF(n—1)

Let’s divide both sides by n(n — 1) and then set Y (n) = F(n)/n:

F(n) _2c Fn-1)
non n—1

2¢ "1
Y(n)—7+Y(n—1)—2ci;?

From this harmonic series'?°, we conclude that Y(n) = ©(logn),
hence F(n) = ©(nlogn). The average complexity of QuickSoRrT is
therefore Tps = @(nlogn).

ALGO 42

% The fact that Tps(1) = O(1) is
implicit here, but it implies that later
down the page we also have F(1) = ¢
and Y(1) =c.

9 cf. remark 95 on p. 41

109 The fact that Y7, 1 = ©(logn)
can be derived from Euler’s formula
(X2} =Inn+v+0(1)), or easily
proven by bounding the sum with
integrals as done on page 14:

QuickSorrt Optimizations

Typical QuickSorT optimizations include:

e Selecting a different pivot value in the PARTITION procedure from
page 39. The ideal value would be the median of the range as it
would ensure equal size for both sides. However, the median is
not really easy to compute without sorting the range already.'*
The usual strategy is to pick the median of the three values A[/],
Alr — 1] and A[|(r + ¢)/2]]. Line 1 of PArRTITION is replaced
by x +— Mep1aNO¥r3(A[{], Alr — 1], A[|(r + £)/2]]). With this
change, QuickSorrt deals nicely with nearly-sorted arrays.’*

e The last recursive call to QuickSorT is a tail call, so it can be
optimized as a loop. Compare these equivalent implementations:

QuickSorT(A, Y4, 1) QuickSorT(A, Y4, 1)

1 ifr—4>1 1 whiler —¢>1

2 p < PartiTION(A, (1) || 2 p < PartiTION(A, (1)
3 QuickSort(A, ¢, p) 3 QuickSorT(A, Y, p)

4 QuickSorT(A,p,r) 4 L p

Any decent compiler would already do this kind of tail call elimi-
nation automatically: this saves memory, because the value of the
local variables have to be saved on the stack before each call.

However, what the compiler cannot guess is that the order of

the two recursive calls to QuickSorT does not matter: we can
actually choose which of the two calls should be turned into a loop.
Here, we want to always recurse on the smaller part, to keep the
recursion as shallow as possible.

QuickSort(A, ¥4, 1)
whiler — ¢ >1
p < PartiTION(A, Y, 7)
ifp—l<r—p
QuickSort(A, ¢, p)
l+—p
else
QuickSorT(A,p,r)

Oy U1 B~ W N R

r<p

While this does not change the time complexity of the algorithm,
it changes its memory complexity'©3. Indeed the memory com-
plexity was O(n) in our first implementation of QuickSoRrT
because the recursion could be n-deep in the worst case; it is now
O(log 1) because there is no way to recurse on an sub-array larger
than n/2.

o Use INSERTIONSORT when the array has a small length (like 10
values — the precise bound has to be found empirically). Even
if INsERTIONSORT has O(n?) complexity, it usually performs a
lot better than QuickSorrt for small-sized input, because it does
not have all the overhead of running PArTiTION and making
recursive calls.

ALGO 43

1ot It is possible to find the median of
an array with only ®(n) operations
using an algorithm sometimes called
“median of medians”. However this
would be very inconvenient here:
firstly the constant hidden behind
the ©(n) notation is quite large, and
secondly this algorithm is itself based
on a recursive procedure similar to
QUICKSORT.

‘o> Input arrays that trigger the worst-
case ®(n?) complexity still exist (see
Fig. 64 page 44), but are harder to
come by.

193] e., the number of additional mem-
ory an algorithm requires to process its
input — this includes the stack in case
of recursive algorithms.

INTROSORT, 0r How to Avoid QuickSoRrt’s Worst Case

Even with the usual optimizations described on page 43, it is pos-
sible to construct an input that triggers QuickSorT’s worst case.
Figure 64 shows an example where the pivot selected by MED1-
ANOFEF3 is the second smallest value, so that PArRTITION dOESs a sin-
gle swap and creates a left part with L = 2 elements, and a right
part with n — 2 elements. The left part can be sorted recursively in
constant time, but when sorting the right part recursively, a similar
(2,n — 2) partition is produced again. This unfortunate situation
occurs until half of the array is sorted: if we sum just the costs of
running PArRTITION On the largest parts up to this point we have
O(n)+0(n—2)+0(n—4)+ - +0(n/2) = O(n?), so the worst
case of QUickSORT is necessarily reached. Any input where the re-
cursion depth’®4 of QuickSorT is linear will lead to the worst case
complexity of @(n?). On the contrary, if the recursion depth is in
O(logn), then we obtain a best case complexity of ®(nlogn).

An easy way to avoid the worst case of QuickSoRrT is to not use
QuickSorrT, and resort instead to HEAPSORT or MERGESORT, that
ensure a ©(nlogn) worst case. However practice shows that Quick-
SorT’s is much faster on the average, so it is usually preferred.

The idea of INTROSORT!S is to execute a variant of QUickSoORT
that will keep track of the depth of the recursive calls in order to en-
sure it is sub-linear. If that depths exceeds c|log# | for some constant
¢, then INTROSORT stops the recursion and sorts the current sub-
array with HEapSorrt instead. Doing so ensure that the entire array
will be sorted in ®(nlog n), either by the variant of QuickSorT, or
with the help of HEarSorT in the difficult cases. The constant ¢ can
be chosen arbitrarily, but it should not be too small to give Quick-
SorT a chance to finish and limit the number of calls to HEAPSORT.
In practice ¢ = 2 is often used.

The pseudo-code below includes the tail call optimization from

page 43. It could be combined with INsERTIONSORT as well.10

INTROSORT(A, Y, 7)

1 INTROSORTREC(A,V,r,2|log(r —4)])
INTROSORTREC(A, ¢, 1, depth_limit)

1 whiler—¢>1

2 if depth_limit = 0

3 HearSort(A, Y4, 7)

4 return

5 else

6 depth_limit < depth_limit — 1

7 p < PartiTiON(A, Y, 7)

8 ifp—0<r—p

9 INTROSORTREC(A, !, p, depth_limit)
10 l+—p

11 else
12 INTROSORTREC(A, p, ¥, depth_limit)
13 r<p

ALGO 44

lo]8]2]10]4]12]6]1]3]5]7]9]11]13]

lo]1]2w0]412]6[8]3]5]7]9]11]13]

—

lo]1]2]3]4]12]6]8]10[5]7]911]13]

—

[o]1]2]3]4]5]6]8]10f12[7]9]11]13]

—

lo]1]2]3]4]5]6]710f12]8]9]1113]

Figure 64: A worst case for Quick-
SorT when the pivot is the median of
All], A[r— 1] and A[|(r + £)/2]].

*°4 This should be understood without
the tail call optimization discussed on

page 43

5 INTROSORT was invented by David
Musser, one of the original authors
(with Alexander Stepanov) of the C++
Standard Template Library (STL). It

is now the default sorting algorithm
behind most (if not all) std: :sort ()
implementations, because the STL
requires std: :sort () torunin

O(nlogn).

16 Here we assume that
HearSort(A4, ¢, 1) executes HEap-
Sorr on the sub-array A[(..r —1]. This
does not exactly matches to prototype
of page 38.

QuiIckSELECT

kth smallest

Given an array A of n values, the value of rank k is the
value of A. An algorithm that takes A and k as input and returns the
rank-k value is called a selection algorithm.'®7 In what follows, we
assume 0 < k < n. The value of rank k = 0 is the minimal value, and
the value of rank n — 1 is the maximal value.

QuickSELECT can be seen as a modification of QuickSoRrT to
implement a selection without sorting the entire array. The trick is
that after PArTiTION has run, we know (from the sizes of the two

parts) in which part we need to search our value recursively.

QuickSeLect(A,n, k)

1 return QuickSeLECTREC(A, 0,1, k)

QuickSeLEcTREC(A, Y, 1, k) T(1)
if r — ¢ = 1 then return A[/] 0(1)

T

C)
2 p<ParTiTION(A, Y, T) ®
3 L<p—14 (C)
4 ifk<L Q)
5 then return QuickSeLECTREC(A, ¢, p, k) T
6

else return QuickSeLecTREC(A, p, 7,k — L)

Figure 65 shows an example.

The complexity differs from QuickSorT, because at most one of
the two possible recursive calls on lines 5-6 may be executed. In the
worst case, we have to assume that ParTiTiON performed poorly
(L = 1), and that we always have to recurse into the largest part of
n — 1 elements. This gives us the following recursive equation:

We conclude that the worst case complexity is T (1) = @(n?).

Let us now consider a case where ParTiTION behaves ideally,
always splitting the array of n elements in two equal halves. The
equation becomes:

T(n)=T(n/2)+0O(n)forn >1

The Master Theorem (p. 31) tells us the solution to this equation
is T(n) = ©(n). While this is not the best case scenario®, this
seems like a favorable case. If we imagine a similar scenario where
we recurse into 90% of the array (or any other ratio), the complexity
will remain linear.

On page 46 we will prove that the average complexity of Quick-
SeLECT is actually ©(n), despite the quadratic worst case.*®®

Do you believe it is possible to write a selection algorithm that
would always run in ®(n)? Jump to page 47 for an answer.

ALGO 45

197 One easy (and inefficient) way to
build a selection algorithm is to first sort
A in increasing order, and then pick

its k™ value. What sorting algorithm
would you use, and what would be the
complexity of that selection algorithm?

\ N S J
QUICKSELECTREC(A,O,10,6L*
¥ ¥ ¥ NN
[4[2]0[4]3][7][8][7]9]4]
N
QUICKSELECTRE\aA,S,IO,l)
¥ N N
[4]2]0]4]3[4]7[8]9]7]

QuickSeLEcTREC(A,5,7,1)
[4]2]0[4]3][4]7]8]9]7]

QuickSeLECTREC(A,6,7,0) =7
Figure 65: An example execution of
QuickSeLect(4,10,6). The figure
shows the state of the array before the
next recursive call to QUickSELEC-
TREC.

08 Exercise: Devise a scenario where
calling QuickSELECT on an array of
size n runs in ©(1).

199 Exercise: Using the idea presented
page 44, write another selection algo-
rithm, called INTROSELECT, with a
worst case of @(nlogn).

Average complexity of QUICKSELECT

To study the average complexity T(n) for QuickSELECT, we con-
sider (as we did on page 42) that the value of L can be anything
between 1 and n — 1 with equal probability, and we average over all
these possibilities. The problem in our case, is that we do not know
if the algorithm will recurse in a part of size L or n — L, so let us

compute an upper bound of T by assuming we recurse into the largest

of these two parts.

T(1) =

©)

(1),
1

T(n) _—

IN

n—1
Y T(max(i,n—i)) +O(n)ifn > 1
i=1

We can simplify this a bit because max(i,n —i) =

If 1 is even, all the terms between T([n/2]) and T(n) appear twice
in the sum. If is even, T'(|7/2]) additionally occurs once, but it is
OK to count it twice since we are establishing an upper bound.

n—1
Ty <2 Y () +0m)
n—1, G

It is not clear how to simplify this, however from the last scenario of
page 45, it seems likely that T(n) = ®(n). Since we are working on
an upper bound, let us prove that T(n) = O(n) by induction°.

Our hypothesis H(n) is that T(n) < cn from some ¢ we can pick
arbitrarily large. Clearly H(1) is true, because T(n) = (1), so we
can find some ¢ larger than this ©(1) constant. Now let us assume
that H(7) holds for 1 <i < n and let us establish H(n):'**

2 2¢ 3n?
T(n) < Y ci+0(n) < — +0(n)
" sl n-138
3cn(n —1) +3cn 3cn 3c¢(n—1)+3c
T(Tl) < 4(1/[71) +®(7’l) < T"FW—F@(H)
cn 3¢ 3c cn
T(n) < cn—z—i-z—i—m—i—@(n) <cn+ (@(n) — Z)

We can take ¢ large enough so that cn/4 dominates ()
T(n) <cn

Conclusion: H(n) holds for all n > 1 and therefore T'(n) = O(n).

However since QuickSeLEcT has to call PArTIiTION fOr 1 > 1, it
necessarily performs at least ®(n) operations, so we can claim that
its average complexity is in fact T(n) = @(n).

i ifi>[n/2]
n—i ifi<|n/2]

ALGO 46

"¢ cf. pp. 32-33

1 In the first line, the sum over ci can
be removed by showing that

n—1
1 < énz.
i=n/2] 8

”i ;- (n=1+4[n/2])(n — n/2])
i=[n/2] 2

_n*—n+|n/2| —|n/2)?
a 2

if n is even:

4n® —4n +2n —n?
8

. 3n2 —2n
- 8

2
o
- 8

if n is odd:
A —dn+2(n—1) — (n —1)2

8
_ -3 _ 3
§ — 8

Linear Selection

While QuickSeLEcT has an average complexity of @(n), it still has
a @(n?) worst case when we arrange the data so that ParTiTioN
behaves badly (for instance using an arrangement similar to Fig. 64
on page 44). However if we could make sure that PaArTiTION Would
always allow us to eliminate a number of values that is a fraction of
n (as opposed to a constant), then the selection would be linear.

This is actually the key of the LINEARSELECT algorithm™?: at any
step of the recursion, it removes a quarter of the values. LINEARSE-
LECT can be seen as a variant of QuickSELEcT where PARTITION is
changed to select its pivot as the median of medians (steps 1-3).

LiNeEARSELECT(A, n, k) T(n)

1 consider the n input values as [£ | groups of 5 val- O(n)
ues (with maybe the last group having less than 5
values) and compute the median of each group

2 compute the median x of all those [£ | medians T([%

3 use x as the pivot of ParTITION (i.€., replacing line 1 O(n
of the algorithm on page 39) to reorganize A

4 recursively call LINEARSELECT on one of the two

parts (depending on k), as done in QUICKSELECT.

Computing the median of 5 values can be done in constant time,
so repeating this operation [% | times in step 1 requires @ (1) op-
erations. Computing the median of these [% | medians however
cannot be done in constant time since the number of values de-
pends on 1; however it correspond to the value of rank [[%5]/2]
among these [£ | values, so we can compute it by calling LINEARS-
ELECT recursively on an array of size [£ |. Hence, assuming that
running LINEARSELECT on 7 values takes T (n) operations, then step
2 needs T([5 |) operations. Calling PARTITION costs ©(n), as seen
on page 39, but thanks to our pivot, we are sure that at each of the
two parts contains at least 25% of the array (see Fig. 66), so in the
worst case, the recursive call of step 4 will cost T(%T"). Thus, we have:

T(1) = ©(1)

T <o +7([5]) +7(F)

Let us prove the following induction hypothesis'*3, H,: “T(n) < cn”.

Clearly Hp holds, because T(1) = ©(1) and we can find c large
.7 H)’l*l
hold, and inject this knowledge into our recursive inequality:

enough to dominate that ®(1). Let us assume that Hy, Hp, ..

ny 3cn c(n+4) 3cn

< — — < N T
T(n)7®(n)+c[5]+ <O+ S+
19¢cn 4c 4c cn
< e _— = —_—— —

T(n) <O(n)+ o Tt (@(n) +3 20)

We can chose ¢ large enough so that c7/20 dominates ©(n) + 4.
Then T(n) < cn, which means that H, holds for any n > 1, and this
allows us to conclude that T(n) = O(n).

We can strengthen this result to T(n) = ©(n) because of step 3.

ALGO 47

2 This algorithm is also known as
“‘median of medians” for reasons that
will be soon obvious.

Figure 66: The circles represent an
array of 34 values organized in 7
groups (6 groups of 5 values, and
one group of 4 values). We interpret
@W—() as meaning u < v. Inside
each group (i.e., each column), values
have been moved so that the median is
on the center line, values above it are
greater, and values below it are lesser.
Similarly, columns have been ordered
such that the median x of all medians
has three greater medians to its left,
and three lesser medians to its right.
We can see that there are more than
n/4 values that are greater than x (the
top left quarter), and more than n/4
values that are lesser than x. Therefore,
if x is used as a pivot in PArRTITION,
both parts are guaranteed to have more
than n/4 values.

3 See pp. 32—33 for the technique.
One way to guess a probable solution
for this equation is to consider that

T([5 1) seems much smaller than
T(31). So as a first guess, we neglect
itand solve T(n) < @(n) + T(3). In
this simplified case, we find using the
master theorem that T(n) = O(n).
Then we use induction to verify if this
solution is still correct for the complete
problem.

Space Complexity

As mentioned on page 18 the space complexity of an algorithm,
often noted S(n), is the amount of additional memory required to
process an input of size n.

The space complexity can be computed using the same mathe-
matical tools we used for computing time complexities. We simply
sum the sizes of all local variables, and if there are function calls
(even recursive calls), we add the maximum space complexities of
all these calls.

For a simple iterative algorithm like SELECcTIONSORT (p. 19) or
INSERTIONSORT (p. 20), there is only a couple of local variables
used to store values or indices, so S(n) = ©(1).**4

A recursive algorithm like BINARYSEARCH (p. 22) has to store
one local variable m per recursive call. Its space complexity is the
solution of S(n) < ©(1) + S(n/2) which is S(n) = O(logn). How-
ever if we account for the fact that BINARYSEARCH is tail recursive
and assume the compiler will perform tail calls elimination, changing
the recursion into a simple loop, then the space complexity drops to
0(1).

Similarly, the space complexity of HEAPSorT (p. 38) satisfies
S(n) < S(2n/3+0(1)) + ©(1), and this can be solved as for Ty (n)
on page 36: S(n) = O(logn).

For an algorithm like MERGESORT (p. 28), we can assume that
the array B of size ®(n) used in MERGE (p. 27) is allocated once
before the recursion, and the space requirement of the recursion is
O(logn). We conclude that S(n) = ©(n).

Finally, the space complexity of QuickSorT depends on how it
has been implemented. If we use the implementation described on
pages 39—40, each call to QuickSorT requires ©(1) local variables
(call to ParTITION included) but we can have n — 1 recursive calls
in the worst case. Therefore S(n) = O(n). However if the trick of
page 43 is used to only recurse on the smaller of the to sides of the
partition, then the recursive depth is at most log, 7 and the space
complexity drops to S(n) = O(logn).

In-place Algorithms

An algorithm is in-place if its space complexity belong to O(logn). In
other words, the additional memory it requires to process an input
of size n is at most logarithmic in #.

This definition is a bit more practical than what we would intu-
itively allow: limiting the memory consumption to O(log 1) instead
of O(1) allows some recursive algorithms like HEAPSorT to qualify
as in-place while still disallowing algorithms that would use recur-
sion to allocate enough local variables to duplicate the input on the
stack.

ALGO 48

"4 Here, and in all our examples, we
are making the practical assumption
that values and indices are integers
stored in a fixed amount of memory.
Some people who are interested in
bit-level complexity may have different
expectation. For instance they could
say that if we want to work with
array that are arbitrarily large, we
need ©(log n) bits to store an index.
Similarly, if we want be able to store
n distinct values in the input array, it
needs ©(nlogn) bits.

ALGO 49

More Sort-Related Topics

Stable Sorting Techniques

While we have illustrated all sorting algorithms over arrays of in-
tegers, in real-life it is often the case that we want to sort records of
values according to some key. The only change required to the algo-
rithms is that instead of comparing array elements (A[i] < A[j]) we
compare some fields of these elements (e.g., Ali].grade < A[j].grade).
Let call this field the sort key.

input output 1 output 2 output 3 output 4
name grade name grade name grade name grade name grade
Robert 10 John 5 Michael 5 John 5 Michael 5
William 15 Michael 5 John 5 Michael 5 John 5
James 10 Robert 10 Robert 10 James 10 James 10
John 5 James 10 James 10 Robert 10 Robert 10
Michael 5 William 15 William 15 William 15 William 15

Figure 67: A table listing students

and their grades. Sorting this table

in ascending-grade order may return
any of the four displayed outputs.

For instance SELECTIONSORT pro-
duces output 3, INsERTIONSORT and
MERGESORT both produce output 1,
HEearSort produces output 4, and the
output of QuickSorT depends on how
the pivot is selected in PArTITION.

A sorting algorithm is stable if it preserves the order of elements
with equal keys. An unstable sorting algorithm may turn the input of
Fig 67 into any of the four possible output. A stable sort will neces-
sarily produce output 1: John and Michael have equal grade so their
relative order has to be preserved; likewise for Robert and James.

The algorithms INserTIONSORT and MERGESORT, as presented

11 :
on pages 20 and 27—28 are stable.*> The following sorts are unsta 55 However some very subtle changes
to these algorithms will lose the stable
property. In INsSERTIONSORT, change
Ali] > key into Ali] > key and the
algorithm will still sort the array, but in
an unstable way. Changing A[{] < A[r]
into A[¢] < A[r] in MErGE will have a
similar effect on MERGESORT.

ble: SELEcTiIONSORT, HEAPSORT, QUICKSORT.

Stable algorithms are mostly useful when records are sorted mul-
tiple times, one key at a time. For instance to obtain output 3 of
Fig 67, where people with equal grades are sorted alphabetically, we
could proceed in two steps as illustrated by Fig. 68.

Figure 68: (1) Sort by names, then

2) use a stable sort to order rades.
name grade name grade name grade ol der by grad
Robert 10 James 10 John 5 In this case, we Would get. the same

. 1) 2) . output using a single sorting procedure
William 15 John 5 2 Michael 5 by modifying the comparison function
James 10 Michael 5 James 10 to order by grades and then by names

in case of equal grades, however there

John 5 Robert 10 Robert 10 are situations (e.g., using a cheap
Michael 5 William 15 William 15 spreadsheet) where we have less

control on the comparison function.

Finally, we can turn any unstable sort into a stable one by append-

Figure 69: Making any sort stable:

(1) modify the key to include the input
order, (2) sort against the new key,

(3) revert to old keys.

ing the input order to the key (Fig. 69), or equivalently, by adding a
new column with the input order and using it for tie breaking.

name grade name grade’ name grade’ name grade
Robert 10 Robert 10 John 5 John 5
William 15 ﬂ) William 15 ﬂ Michael 5 @) Michael 5
James 10 James 10 Robert 10 Robert 10
John 5 John 5 James 10 James 10
Michael 5 Michael 5 William 15 William 15

ALGO

Further Reading
We recommend the following books (ordered by relevance):

o Introduction to Algorithms (Third Edition) by Thomas H. Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2009.

This book covers most of the topics touched in our lecture. Focus
on chapters: 1-4, 613, and 15. This books also has chapters on
graphs that intersect with the lecture on graph theory you will get
next semester.

o Concrete Mathematics: A Foundation for Computer Science (Sec-
ond Edition) by Ronald L. Graham, Donald E. Knuth, and Oren
Patashnik. Addison-Wesley, 1994.

An introduction to mathematical tools useful to the computer
scientist, and presented very nicely.

o Advanced Data Structures by Peter Brass. Cambridge University
Press, 2008.

This book presents a wide range of data structures. It is well
illustrated, and it gives actual C code for implementing each data
structure.

o Analysis of Algorithms (Second Edition) by Robert Sedgewick and
Philippe Flajolet. Addison-Weysley, 2013.

This book focuses on the mathematical tools needed for studying
the complexity of algorithm, but it goes very fast into powerful
techniques (such as generating functions) that are beyond the
scope of the current lecture. The first two chapters contains mate-
rial discussed in this lecture. In particular, our illustration of the
master theorem (page 31) is inspired from this book.

	Mathematical Background
	Computing Complexities for Algorithms
	More Examples of Complexities
	More Sort-Related Topics
	Further Reading

