Cours page 1/8

ESPACES PROBABILISÉS

Le but du chapitre est de généraliser la notion de loi de probabilité sur un ensemble fini Ω , vue en première année, au cas où l'ensemble Ω n'est pas nécessairement fini. On distinguera pour cela deux types d'ensembles infinis (cf. partie 1.1) :

- les ensembles $d\acute{e}nombrables$ infinis "pas trop gros" pour lesquels les choses se passent de façon analogue au cas fini : par exemple, on peut y définir la probabilité de toute partie de Ω .
- les ensembles infinis non-dénombrables infinis "trop gros" pour lesquels les choses sont plus compliquées : par exemple, il n'est pas toujours possible (pour des raisons qui dépassent le cadre de ce cours) de définir la probabilité de toutes les parties de Ω .

Cette difficulté conduit à la notion de tribu (cf. partie 1.2), ensemble de parties de Ω (donc sous-ensemble de $\mathcal{P}(\Omega)$) sur lequel on pourra définir une loi de probabilité (cf. partie 1.3).

1 Espaces probabilisés

1.1 Préliminaires : ensembles dénombrables

1.1.1 Définition - Ensemble dénombrable.

On dit qu'un ensemble E est **dénombrable** s'il existe une bijection de \mathbb{N} sur E.

- **1.1.2 Remarques.** 1. Un ensemble dénombrable est donc un ensemble infini qui peut être décrit en extension sous la forme $\{x_n \mid n \in \mathbb{N}\}.$
- 2. La relation "être en bijection avec" est une relation d'équivalence sur la classe de tous les ensembles. Les ensembles dénombrables sont ceux de la classe d'équivalence de \mathbb{N} .

En particulier, tout ensemble en bijection avec un ensemble dénombrable est dénombrable.

1.1.3 Proposition - Exemples d'ensembles dénombrables.

- 1. Les ensembles \mathbb{N} , \mathbb{Z} et \mathbb{Q} sont dénombrables.
- 2. Toute partie infinie d'un ensemble dénombrable est dénombrable.
- 3. Le produit cartésien de deux ensembles dénombrables est dénombrable.

Démonstration.

- 1. Le cas de \mathbb{N} est évident, et l'application $\varphi : \mathbb{N} \to \mathbb{Z}$, $n \mapsto (-1)^n \lfloor \frac{n+1}{2} \rfloor$, est une bijection.
 - **Rq.** Cette bijection φ consiste à énumérer les entiers positifs avec les entiers naturels pairs, et les entiers négatifs avec les entiers naturels impairs.
 - L'application $\psi : \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}^*$, $r \mapsto (a, b)$, où r s'écrit sous forme irréductible $r = \frac{a}{b}$, réalise une bijection de \mathbb{Q} sur une partie infinie de $\mathbb{Z} \times \mathbb{N}^*$. Au vu des points 2 et 3, \mathbb{Q} est dénombrable.
- 2. Si $\varphi: \mathbb{N} \to E$ est une bijection, et si F est une partie infinie de E, alors φ induit une bijection $\tilde{\varphi}: \mathbb{P} \to F$, où $\mathbb{P} = \varphi^{-1}(F)$ est une partie infinie de \mathbb{N} . Et une énumération des éléments de \mathbb{P} dans l'ordre croissant fournit une bijection $\psi: \mathbb{N} \to \mathbb{P}$, d'où le résultat.
 - **Rq.** La bijection ψ se construit rigoureusement par récurrence, en posant $\psi(0) = \min \mathbb{P}$, et si $\psi(n)$ est construit, en posant $\psi(n+1) = \min\{x \in \mathbb{P} \mid x > \psi(n)\}.$
- 3. Si $\varphi_1: \mathbb{N} \to E_1$ et $\varphi_2: \mathbb{N} \to E_2$ sont deux bijections, alors $\varphi: \mathbb{N} \times \mathbb{N} \to E_1 \times E_2$, $(n, p) \mapsto (\varphi_1(n), \varphi_2(p))$, est une bijection. Il suffit donc de montrer que $\mathbb{N} \times \mathbb{N}$ est dénombrable.
 - Démo 1. L'application $\chi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^*$, $(p,q) \mapsto 2^p(2q+1)$, est une bijection (tout entier naturel non nul s'écrit de façon unique comme produit d'une puissance de 2 et d'un nombre impair).
 - Démo 2. L'application $\psi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(p,q) \mapsto p + \frac{1}{2}(p+q)(p+q+1)$ est une bijection (qui consiste à énumérer les couples d'entiers en suivant les diagonales d'équation p+q=n).

1.1.4 Proposition - Exemples d'ensembles infinis non dénombrables.

- 1. Un intervalle non trivial de \mathbb{R} (donc en particulier \mathbb{R}) et \mathbb{C} sont non dénombrables.
- 2. L'ensemble des suites à valeurs dans un ensemble de cardinal $\geqslant 2$ est non dénombrable.
- 3. L'ensemble des parties d'un ensemble dénombrable est non dénombrable.

Démonstration.

- 1. Tout intervalle non trivial |a;b| de \mathbb{R} est en bijection avec |0;1| (crochets ouverts ou fermés), donc il suffit de montrer qu'une application $\varphi: \mathbb{N}^* \to |0;1|$ ne peut pas être surjective. Et en effet, un $x \in |0;1|$ dont, pour tout $n \in \mathbb{N}^*$, la n-ième décimale du développement décimal propre est différente de celle de $\varphi(n)$, ne peut pas avoir d'antécédent par φ .
 - Puisque C contient un ensemble infini non dénombrable, il est lui même non dénombrable.
- 2. L'argument est analogue à celui du premier point : si E est un ensemble de cardinal ≥ 2 , alors une application $\varphi : \mathbb{N} \to E^{\mathbb{N}}$ ne peut pas être surjective. En effet, une suite $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ telle que, pour tout $n \in \mathbb{N}$, u_n est distinct du n-ième terme de $\varphi(n)$, ne peut pas avoir d'antécédent par φ .
- 3. Résulte du fait qu'une application $\varphi: E \to \mathscr{P}(E)$ ne peut pas être surjective. En effet la partie $F = \{x \in E \mid x \notin \varphi(x)\}$ ne saurait avoir d'antécédent par φ .

1.2 Tribu sur un ensemble

1.2.1 Définitions - Tribu - Espace probabilisable.

- Soit Ω un ensemble. On appelle **tribu** sur Ω tout sous-ensemble \mathscr{T} de $\mathscr{P}(\Omega)$ contenant Ω , et *stable* par passage au complémentaire et par union dénombrable, i.e. tel que :
 - a. $\Omega \in \mathscr{T}$,
 - b. Pour tout $A \in \mathcal{T}$, $\overline{A} = \Omega \setminus A \in \mathcal{T}$,
 - c. Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de $\mathscr{T}, \bigcup_{n=0}^{+\infty} A_n \in \mathscr{T}.$
- On dit qu'un ensemble Ω muni d'une tribu $\mathscr T$ sur Ω , i.e. formellement le couple $(\Omega, \mathscr T)$, est un **espace probabilisable**.

1.2.2 Exemples. Soit Ω un ensemble.

- Les ensembles $\{\emptyset, \Omega\}$ et $\mathscr{P}(\Omega)$ sont deux tribus sur Ω (respectivement la plus petite et la plus grosse, au sens de l'inclusion). Lorsque Ω est fini ou dénombrable, on le munit a priori, sauf mention du contraire, de sa tribu maximale $\mathscr{P}(\Omega)$.
- Pour tout $A \in \mathcal{P}(\Omega)$, l'ensemble $\{\emptyset, A, \overline{A}, \Omega\}$ est une tribu sur Ω , dite engendrée par A.

1.2.3 Théorème - Propriétés des tribus.

Soit (Ω, \mathcal{T}) un espace probabilisable. Alors \mathcal{T} contient l'ensemble vide, est stable par union finie, par intersection finie ou dénombrable, et par différence.

Démonstration.

- On a $\Omega \in \mathscr{T}$ donc $\emptyset = \overline{\Omega} \in \mathscr{T}$.
- La stabilité par union finie résulte de ce que si l'on complète une famille finie (A_1, \ldots, A_p) d'éléments de $\mathscr T$ en une suite $(A_n)_{n\in\mathbb N}$, en posant $A_n=\emptyset$ si $n\not\in \llbracket 1;p\rrbracket$, alors $\bigcup_{n=1}^p A_n=\bigcup_{n=0}^{+\infty} A_n$.
- La stabilité par intersection finie ou dénombrable résulte de ce que pour tout ensemble I et toute famille $(A_i)_{i\in I}$ de parties de Ω , on a $\bigcap_{i\in I}A_i=\overline{\bigcup_{i\in I}\overline{A_i}}$.
- La stabilité par différence résulte de ce que pour toutes parties A et B de Ω , $A \setminus B = A \cap \overline{B}$.

1.2.4 Définitions - Vocabulaire des probabilités.

Soit (Ω, \mathcal{T}) un espace probabilisable.

- Les éléments de *T* sont appelés des événements.
 Ω est l'univers, ou l'événement certain, et ∅ est l'événement impossible.
- Deux événements A et B sont dits incompatibles si $A \cap B = \emptyset$, et contraires si $B = \overline{A}$.
- Un système complet d'événements est une partition de Ω constituée d'éléments de \mathscr{T} .
- 1.2.5 Remarque (Modélisation mathématique d'une expérience aléatoire). Les issues possibles d'une expérience aléatoire constituent un ensemble Ω , l'univers de cette expérience aléatoire.
- Si l'on souhaite considérer plus particulièrement les issues vérifiant une certaine assertion \mathscr{A} , il convient de choisir une tribu \mathscr{T} sur Ω contenant la partie $A = \{\omega \in \Omega \mid \omega \text{ vérifie } \mathscr{A}\}$ de Ω constituée des issues vérifiant l'assertion \mathscr{A} .

Dans ce contexte, on dit que la partie A est l'événement « l'assertion $\mathscr A$ est vérifiée ».

- Les propriétés des tribus listées en 1.2.1 et 1.2.3 permettent alors les considérations usuelles sur les événements : si A, B et A_i (où $i \in I$, ensemble fini ou dénombrable) sont des événements définis par des assertions \mathscr{A} , \mathscr{B} et \mathscr{A}_i (où $i \in I$) respectivement, alors :
 - \star \overline{A} est l'événement « l'assertion $\mathscr A$ n'est pas vérifiée ».
 - $\star A \cup B$, $A \cap B$ et $A \setminus B$ sont respectivement les événements « au moins l'une des deux assertions \mathscr{A} et \mathscr{B} est vérifiée », « \mathscr{A} et \mathscr{B} sont vérifiées », et « seule \mathscr{A} est vérifiée ».
 - $\star \bigcup_{i \in I} A_i$ et $\bigcap_{i \in I} A_i$ sont respectivement les événements « l'une (au moins) des assertions \mathscr{A}_i est vérifié » et « toutes les assertions \mathscr{A}_i sont vérifiées ».
- **1.2.6 Exemples.** 1. Si l'expérience aléatoire consiste à lancer une fois un dé à 6 faces, alors l'univers est $\Omega = [1; 6]$, que l'on munit usuellement de la tribu maximale $\mathscr{T} = \mathscr{P}(\Omega)$.

Les événements « le résultat obtenu est pair » et « le résultat obtenu est supérieur ou égal à 3 » sont respectivement les parties $A = \{2,4,6\}$ et $B = \{3,4,5,6\}$ de Ω .

Alors \overline{A} , $A \cup B$, $A \cap B$ et $A \setminus B$ sont respectivement les événements « le résultat obtenu est impair », « le résultat obtenu n'est pas 1 », « on a obtenu 4 ou 6 » et « on a obtenu 2 ».

2. Si l'expérience aléatoire consiste à lancer indéfiniment un dé à 6 faces, alors l'univers est $\Omega = \llbracket 1; 6 \rrbracket^{\mathbb{N}^*}$, que l'on munit usuellement d'une tribu \mathscr{T} sur Ω contenant, pour tous $k \in \llbracket 1; 6 \rrbracket$ et $p \in \mathbb{N}$, la partie $A_{k,p} = \{(u_n)_{n \in \mathbb{N}^*} \in \Omega \mid u_p = k\}$ de Ω , à savoir l'événement « on a obtenu k au p-ième lancer ».

Alors $\bigcup_{p=1}^{+\infty} A_{k,p}$ et $\bigcap_{p=1}^{+\infty} A_{k,p}$ sont respectivement les événements « on a obtenu (au moins) une fois k » et « on n'a obtenu que des k ».

1.3 Loi de probabilité sur un espace probabilisable

1.3.1 Définitions - Loi de probabilité - Espace probabilisé.

- Soit (Ω, \mathscr{T}) un espace probabilisable. On appelle (loi de) probabilité sur (Ω, \mathscr{T}) toute application $P : \mathscr{T} \to [0; 1]$ de poids total 1 et σ -additive, i.e. telle que :
 - a. $P(\Omega) = 1$,
 - b. Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'événements <u>deux à deux incompatibles</u>, la série $\sum P(A_n)$ converge et $P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} P(A_n)$.
- On dit qu'un ensemble Ω , muni d'une tribu \mathscr{T} sur Ω et d'une probabilité P sur (Ω, \mathscr{T}) , i.e. formellement le triplet (Ω, \mathscr{T}, P) , est un **espace probabilisé**.

1.3.2 Proposition - Loi de probabilité sur un univers fini ou dénombrable.

Soit Ω un ensemble non vide, fini ou dénombrable. Alors pour toute famille $(p_{\omega})_{\omega \in \Omega}$ de réels positifs dont la somme vaut 1, il existe une unique loi de probabilité P sur $(\Omega, \mathscr{P}(\Omega))$ telle que $\forall \omega \in \Omega, P(\{\omega\}) = p_{\omega}$. Elle est définie, pour tout $A \in \mathscr{P}(\Omega)$, par $P(A) = \sum_{\omega \in A} p_{\omega}$.

 \mathbf{Rq} . Dans le cas où A est infini, cette somme est la somme d'une série convergente.

Démonstration.

- Montrons que l'application P définie dans l'énoncé est une loi de probabilité. Par hypothèse sur la famille $(p_{\omega})_{\omega \in \Omega}$, on a $P(\Omega) = \sum_{\omega \in \Omega} p_{\omega} = 1$. Et si $(A_n)_{n \in \mathbb{N}}$ est une suite d'événements deux à deux incompatibles, alors en sommant par paquets (formule admise dans le cas dénombrable), on a $P(\bigcup_{n=0}^{+\infty} A_n) = \sum_{\omega \in \bigcup_{n=0}^{+\infty} A_n} p_{\omega} = \sum_{n=0}^{+\infty} \sum_{\omega \in A_n} p_{\omega} = \sum_{n=0}^{+\infty} P(A_n)$.
- L'unicité résulte de la σ -additivité et de ce que toute partie de Ω est finie ou dénombrable (1.1.3), donc est la réunion finie ou dénombrable de ses singletons.
- 1.3.3 Remarques. 1. Définir une loi de probabilité sur un univers fini ou dénombrable Ω se résume donc à définir la probabilité p_{ω} de chaque singleton de Ω , et à vérifier que $\sum_{\omega \in \Omega} p_{\omega} = 1$. C'est ce qui est fait plus loin, en partie 3, pour définir les lois de probabilités usuelles.
- 2. Ce résultat est faux si Ω est infini non dénombrable, la σ -additivité ne permettant alors plus de définir la probabilité de toute partie de Ω à partir des probabilités des singletons.
- **1.3.4 Exemples.** 1. Dans le cas du lancer d'un dé à 6 faces, on munira $\Omega = [1; 6]$ de la loi de probabilité P suivante, selon l'hypothèse faite sur le dé lancé :
 - a. si le dé est équilibré, alors P est la loi uniforme, définie par $P(\{k\}) = \frac{1}{6}$ pour tout $k \in [1; 6]$.
 - b. si le dé à été truqué de façon à donner $k \in [1; 6]$ avec une probabilité proportionnelle à k, alors P est la loi définie par $P(\{k\}) = \frac{k}{21}$, pour tout $k \in [1; 6]$.

La probabilité que le résultat obtenu soit pair est alors $\frac{1}{2}$ ou $\frac{4}{7}$ selon le cas envisagé.

- 2. La suite $(\frac{1}{2^n})_{n\in\mathbb{N}^*}$ définit une loi de probabilité P sur \mathbb{N}^* pour laquelle la probabilité de l'ensemble $\mathbb{P}=\{2k\mid k\in\mathbb{N}^*\}$ des entiers naturels pairs non nuls est $P(\mathbb{P})=\sum_{k=1}^{+\infty}\frac{1}{2^{2k}}=\frac{1}{3}$.
- 3. Dans le cas des lancers successifs d'un dé à 6 faces équilibré, on admettra l'existence d'une tribu \mathscr{T} sur $\Omega = \llbracket 1; 6 \rrbracket^{\mathbb{N}^*}$ contenant les $A_{k,p}$ (définis en 1.2.6), et d'une loi de probabilité P sur (Ω, \mathscr{T}) , telles que pour tous $k \in \llbracket 1; 6 \rrbracket$ et $p \in \mathbb{N}^*$, $P(A_{k,p}) = \frac{1}{6}$.

1.3.5 Théorème - Propriétés des lois de probabilités.

Soient (Ω, \mathcal{T}, P) un espace probabilisé.

- 1. On a $P(\emptyset) = 0$, et plus généralement pour tout $A \in \mathcal{T}$, $P(\overline{A}) = 1 P(A)$.
- 2. Soient $A, B \in \mathcal{T}$.
 - a. On a $P(A \cup B) = P(A) + P(B) P(A \cap B)$. En particulier, $P(A \cup B) \leq P(A) + P(B)$, avec égalité si A et B sont incompatibles.
 - b. Croissance. Si $A \subset B$, alors $P(A) \leqslant P(B)$, et plus précisément $P(B) P(A) = P(B \setminus A)$.
- 3. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements.
 - a. Sous-additivité. On a $P\left(\bigcup_{n=0}^{+\infty}A_n\right) \leqslant \sum_{n=0}^{+\infty}P(A_n)$, le terme de droite pouvant valoir $+\infty$.
 - b. Continuité croissante. Si $\forall n \in \mathbb{N}, A_n \subset A_{n+1}, \text{ alors } P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n).$
 - c. Continuité décroissante. Si $\forall n \in \mathbb{N}, A_{n+1} \subset A_n, \text{ alors } P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n).$

Démonstration.

- 1. La σ -additivité appliquée à la suite $(A, \overline{A}, \emptyset, \emptyset, \ldots)$ montre que $P(\emptyset) = 0$ et que $P(A) + P(\overline{A}) = 1$.
- 2. a. Par σ -additivité et 1, on a $P(A \cup B) = P(A) + P(B \setminus A)$ et $P(B) = P(B \setminus A) + P(A \cap B)$.
 - b. Les deux égalités de 2a donnent, dans le cas $A \subset B$, $P(B) = P(B \setminus A) + P(A)$.
- 3. Posons $B_0 = A_0$ et pour tout $n \ge 1$, $B_n = A_n \setminus \bigcup_{k=0}^{n-1} A_k$, de sorte que les B_n sont des événements deux à deux disjoints, avec $B_n \subset A_n$ et $\bigcup_{n=0}^{+\infty} B_n = \bigcup_{n=0}^{+\infty} A_n$.
 - a. Par σ -additivité et croissance, on a alors $P(\bigcup_{n=0}^{+\infty} A_n) = \sum_{n=0}^{+\infty} P(B_n) \leqslant \sum_{n=0}^{+\infty} P(A_n)$.
 - b. Si $\forall k \in \mathbb{N}, A_k \subset A_{k+1}$, alors $\forall n \geq 1, B_n = A_n \setminus A_{n-1}$, donc par 2b, $P(B_n) = P(A_n) P(A_{n-1})$. Par σ -additivité et télescopage, on a alors $P(\bigcup_{n=0}^{+\infty} A_n) = \sum_{n=0}^{+\infty} P(B_n) = \lim_{n \to +\infty} P(A_n)$.
 - c. Si $\forall k \in \mathbb{N}$, $A_{k+1} \subset A_k$, alors $\overline{A_k} \subset \overline{A_{k+1}}$, et donc par 3b, $P(\bigcup_{n=0}^{+\infty} \overline{A_n}) = \lim_{n \to +\infty} P(\overline{A_n})$. Par 1, on a alors, puisque $\bigcup_{n=0}^{+\infty} \overline{A_n} = \overline{\bigcap_{n=0}^{+\infty} A_n}$, $P(\bigcap_{n=0}^{+\infty} A_n) = \lim_{n \to +\infty} P(A_n)$.
- **1.3.6 Remarques.** 1. Puisque $P(\emptyset) = 0$, la σ -additivité et la sous-additivité sont également valables pour une famille finie d'événements.
- 2. La continuité (dé)croissante donne, pour une suite d'événements $(A_n)_{n\in\mathbb{N}}$ quelconque :

$$P\Big(\bigcup_{k=0}^{+\infty}A_k\Big)=\lim_{n\to+\infty}P\Big(\bigcup_{k=0}^{n}A_k\Big)\quad\text{ et }\quad P\Big(\bigcap_{k=0}^{+\infty}A_k\Big)=\lim_{n\to+\infty}P\Big(\bigcap_{k=0}^{n}A_k\Big).$$

- 1.3.7 Exemples. Considérons les lancers successifs d'un dé équilibré à 6 faces (1.2.6 et 1.3.4).
- L'événement $A = \bigcup_{p=1}^{+\infty} A_{6,p}$ « on obtient (au moins) une fois 6 » est la réunion croissante des $A_n = \bigcup_{k=1}^n A_{6,k}$ « on obtient (au moins) une fois 6 au cours des n premiers lancers ». On verra en 2.2.6 que $\forall n \geq 1$, $P(A_n) = 1 (\frac{5}{6})^n$, donc par continuité croissante, P(A) = 1.
- L'événement $B = \bigcap_{p=1}^{+\infty} A_{6,p}$ « on n'obtient que des 6 » est l'intersection décroissante des $B_n = \bigcap_{k=1}^n A_{6,k}$ « on n'obtient que des 6 au cours des n premiers lancers ». On verra en 2.2.6 que $\forall n \geq 1$, $P(B_n) = (\frac{1}{6})^n$, donc par continuité décroissante, P(B) = 0.

1.3.8 Définitions - Vocabulaire des probabilités (suite).

Soit (Ω, \mathcal{T}, P) un espace probabilisé.

- Un événement $A \in \mathcal{T}$ tel que P(A) = 0 est dit **presque impossible**, ou **négligeable**.
- Un événement $A \in \mathcal{T}$ tel que P(A) = 1 est dit **presque sûr**.
- Un système presque complet d'événements est une famille d'événements deux à deux disjoints et de réunion presque sûre.

2 Conditionnement et indépendance

2.1 Probabilités conditionnelles

2.1.1 Définition.

Soient (Ω, \mathcal{T}, P) un espace probabilisé et $B \in \mathcal{T}$ tel que $P(B) \neq 0$. Alors pour tout $A \in \mathcal{T}$, la **probabilité conditionnelle** de A sachant B est le réel, noté $P_B(A)$ ou P(A|B), défini par

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

2.1.2 Remarque. Sous les hypothèses de 2.1.1, l'application $P_B: \mathscr{T} \to [0;1], A \mapsto P_B(A)$, ainsi définie est une loi de probabilité sur (Ω, \mathscr{T}) .

Démonstration.

On a $P_B(\Omega) = P(B)/P(B) = 1$. Et si $(A_n)_{n \in \mathbb{N}}$ est une suite d'événements 2 à 2 incompatibles, alors $(A_n \cap B)_{n \in \mathbb{N}}$ est une suite d'événements 2 à 2 incompatibles et $(\bigcup_{n=0}^{+\infty} A_n) \cap B = \bigcup_{n=0}^{+\infty} (A_n \cap B)$, donc $P_B(\bigcup_{n=0}^{+\infty} A_n) = \frac{1}{P(B)} P(\bigcup_{n=0}^{+\infty} (A_n \cap B)) = \frac{1}{P(B)} \sum_{n=0}^{+\infty} P(A_n \cap B) = \sum_{n=0}^{+\infty} P_B(A_n)$.

2.1.3 Théorème - Les trois formules fondamentales du calcul des probabilités.

Soient (Ω, \mathcal{T}, P) un espace probabilisé.

- 1. Formule de Bayes. Pour tous $A, B \in \mathcal{T}$ de probabilité non nulle, $P_B(A) = \frac{P_A(B)P(A)}{P(B)}$.
- 2. Formule des probabilités totales. Si $(A_n)_{n\in\mathbb{N}}$ est un système (presque) complet d'événements, alors pour tout $B\in\mathcal{T}$, on a, en posant $P(A_n)P_{A_n}(B)=0$ si $P(A_n)=0$:

$$P(B) = \sum_{n=0}^{+\infty} P(B \cap A_n) = \sum_{n=0}^{+\infty} P_{A_n}(B) P(A_n).$$

3. Formule des probabilités composées. Si A_1, A_2, \ldots, A_n sont des événements tels que $P(A_1 \cap \cdots \cap A_{n-1}) \neq 0$, alors pour tout $k \in [1; n-2], P(A_1 \cap \cdots \cap A_k) \neq 0$ et

$$P\Big(\bigcap_{k=1}^{n} A_k\Big) = P(A_1)P_{A_1}(A_2)P_{A_1\cap A_2}(A_3)\cdots P_{A_1\cap \dots\cap A_{n-1}}(A_n).$$

Démonstration.

- 1. Par définition, les deux termes $P(B)P_B(A)$ et $P(A)P_A(B)$ valent $P(A \cap B)$.
- 2. Quitte à compléter $(A_n)_{n\in\mathbb{N}}$ avec le complémentaire de $\bigcup_{n=0}^{+\infty}A_n$, qui est négligeable, on peut supposer que $(A_n)_{n\in\mathbb{N}}$ est un système complet d'événements. Alors $B = \bigcup_{n=0}^{+\infty}(B \cap A_n)$, et les $B \cap A_n$ sont 2 à 2 disjoints, donc par σ -additivité, $P(B) = \sum_{n=0}^{+\infty}P(B \cap A_n)$. La dernière égalité résulte de la définition des probabilités conditionnelles.
- 3. Par récurrence à partir de la définition des probabilités conditionnelles.
- **2.1.4 Remarques.** La formule de Bayes est parfois donnée sous la forme suivante : si $(A_n)_{n\in\mathbb{N}}$ est un système (presque) complet d'événements, alors pour tout $B \in \mathcal{T}$ et tout $k \in \mathbb{N}$,

$$P_B(A_k) = \frac{P_{A_k}(B)P(A_k)}{\sum_{n=0}^{+\infty} P_{A_n}(B)P(A_n)}.$$

- La formule des probabilités totales est également valable pour une système (presque) complet d'événements fini (en complétant la famille finie d'événements en une suite avec des \emptyset).
- **2.1.5 Exemple.** Une urne contient initialement 7 boules noires et 3 boules blanches. On en tire successivement 3 boules selon le protocole suivant : si on obtient une boule noire alors on la remet, et si on obtient une boule blanche alors on la remplace par une noire.
- 1. Probabilité que la deuxième boule obtenue soit blanche?
- 2. Probabilité d'avoir tiré une boule blanche en premier, sachant que la seconde était blanche?
- 3. Probabilité de tirer 3 boules blanches à la suite?

2.2 Indépendance

2.2.1 Définitions - Indépendance - Indépendance mutuelle.

Soit (Ω, \mathcal{T}, P) un espace probabilité.

- On dit que deux événements A et B sont **indépendants** si $P(A \cap B) = P(A)P(B)$, i.e. dans le cas où $P(B) \neq 0$, si $P_B(A) = P(A)$.
- Plus généralement, des événements A_i , pour $i \in I$, sont dits **mutuellement indépendants** si <u>pour toute partie finie</u> $J \subset I$, $P\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} P(A_j)$.

- **2.2.2 Remarque.** L'indépendance mutuelle ne se résume pas à la propriété sur l'intersection de touts les $A_i: P(\bigcap_{i\in I} A_i) = \prod_{i\in I} P(A_i)$ (ce produit n'a pas forcément de sens si I est infini); ni à l'indépendance deux à deux : $\forall i, j \in I$ avec $i \neq j$, $P(A_i \cap A_j) = P(A_i)P(A_j)$.
- 2.2.3 Exemples. On lance successivement deux dés équilibrés à 6 faces.
- On considère les événements A_1 « le résultat du premier dé est pair », A_2 « le résultat du second dé est impair » et A_3 « les deux résultats sont de même parité ».

Alors
$$P(A_i) = \frac{1}{2}$$
 et $P(A_i \cap A_j) = \frac{1}{4}$ si $i \neq j$, mais $P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3)$.

• On considère les événements A_1 « le résultat du second dé est ≥ 4 », A_2 « le résultat du second dé est impair » et A_3 « la somme des deux résultats vaut 9 ».

Alors
$$P(A_1) = P(A_2) = \frac{1}{2}$$
 et $P(A_3) = \frac{1}{9}$, puis $P(A_1 \cap A_2 \cap A_3) = \frac{1}{36} = P(A_1)P(A_2)P(A_3)$, mais $P(A_1 \cap A_2) = \frac{1}{6} \neq P(A_1)P(A_2)$ et $P(A_1 \cap A_3) = \frac{1}{12} \neq P(A_1)P(A_3)$.

2.2.4 Proposition - Propriétés de l'indépendance mutuelle.

Soient A_i , pour $i \in I$, des événements mutuellement indépendants.

- 1. Pour tout $J \subset I$, les événements A_j , pour $j \in J$, sont mutuellement indépendants.
- 2. Posons $B_i = A_i$ ou $B_i = \overline{A_i}$ pour tout $i \in I$. Alors les événements B_i , pour $i \in I$, sont mutuellement indépendants.

Démonstration.

- 1. Toute partie finie d'une partie de I est une partie finie de I.
- 2. Soit J une partie finie de I.

Montrons que $P(\bigcap_{j\in J} B_j) = \prod_{j\in J} P(B_j)$, par récurrence sur $n = \operatorname{card}\{j\in J\mid B_j = \overline{A_j}\}$. Le cas n=0 est trivial. Supposons $n\geqslant 1$ et le résultat établi pour toute partie finie K de I telle que $\operatorname{card}\{j\in K\mid B_j=\overline{A_j}\}=n-1$. Soient alors $j_0\in J$ tel que $B_{j_0}=\overline{A_{j_0}}$, et $J'=J\setminus\{j_0\}$. Alors par formule des probabilités totales associée au système complet d'événements $(A_{j_0},\overline{A_{j_0}})$, puis par hypothèse de récurrence (appliquée deux fois), on a

$$\begin{array}{l} P(\bigcap_{j \in J} B_j) = P(\overline{A_{j_0}} \cap (\bigcap_{j \in J'} B_j)) = P(\bigcap_{j \in J'} B_j) - P(\underline{A_{j_0}} \cap (\bigcap_{j \in J'} B_j)) \\ = \prod_{j \in J'} P(B_j) - P(A_{j_0}) \prod_{j \in J'} P(B_j) = P(\overline{A_{j_0}}) \prod_{j \in J'} P(B_j) = \prod_{j \in J} P(B_j). \end{array}$$

- **2.2.5 Remarque.** L'indépendance modélise le fait que la réalisation d'un événement n'a pas d'influence sur la réalisation des autres, comme pour des événements liés à des tirages successifs avec remise (urne/jeu de cartes), ou à des lancers successifs (dé/pièce de monnaie).
- **2.2.6 Exemple.** Dans le cas des lancers successifs d'un dé équilibré à 6 faces, on suppose l'indépendance mutuelle des événements de type $A_{\cdot,n}$, pour $n \in \mathbb{N}^*$ (définis en 1.2.6).

Ainsi, pour tout $n \in \mathbb{N}^*$, on a $P(\bigcap_{k=1}^n A_{6,k}) = (\frac{1}{6})^n$, et en passant aux complémentaires, $P(\bigcup_{k=1}^n A_{6,k}) = 1 - P(\bigcap_{k=1}^n \overline{A_{6,k}}) = 1 - (\frac{5}{6})^n$. Cela justifie les calculs de 1.3.7.

3 Lois de probabilité usuelles

3.1 Probabilités usuelles sur un univers fini (rappels)

3.1.1 Définition - Loi uniforme.

Soit Ω un ensemble fini non vide. La **loi uniforme** sur Ω , en abrégé $\mathscr{U}(\Omega)$, est la loi de probabilité P sur Ω définie par $P(\{\omega\}) = \frac{1}{\operatorname{card}(\Omega)}$, pour tout $\omega \in \Omega$.

- **3.1.2 Remarques.** Plus généralement, pour tout $A \subset \Omega$, $P(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}$.
- Situation type: résultat d'un tirage au hasard dans un ensemble fini (urne, jeu de cartes) résultat d'un lancer de dé ou d'une pièce non truqué(e), ou équilibré(e).

3.1.3 Définition - Loi de Bernoulli.

Soit $p \in [0; 1]$. La **loi de Bernoulli** de paramètre p, en abrégé $\mathcal{B}(p)$, est la loi de probabilité P sur $\{0; 1\}$ définie par $P(\{1\}) = p$ et $P(\{0\}) = 1 - p$.

3.1.4 Remarque. Situation type: succès/échec d'une expérience dont la probabilité de succès (encodé par 1) est p, et celle de l'échec (encodé par 0) est donc 1 - p.

3.1.5 Définition - Loi Binomiale.

Soient $n \in \mathbb{N}^*$ et $p \in [0; 1]$. La **loi binomiale** de paramètres n et p, en abrégé $\mathcal{B}(n, p)$, est la loi de probabilité P sur [0; n] définie par $P(\{k\}) = \binom{n}{k} p^k (1-p)^{n-k}$, pour tout $k \in [0; n]$.

- **3.1.6 Remarque.** Situation type : nombre de succès obtenus lors de la répétition de n expériences indépendantes les unes des autres, et dont la probabilité de succès est p.
- 3.2 Probabilités usuelles sur un univers dénombrable

3.2.1 Définition - Loi géométrique.

Soit $p \in]0;1]$. La **loi géométrique** de paramètre p, en abrégé $\mathcal{G}(p)$, est la loi de probabilité sur \mathbb{N}^* définie par $P(\{k\}) = (1-p)^{k-1}p$, pour tout $k \in \mathbb{N}^*$.

- **3.2.2 Remarques.** 1. Situation type : rang d'apparition du premier succès obtenu lors d'une suite d'expériences indépendantes les unes des autres, et dont la probabilité de succès est p.
- 2. La loi géométrique est l'unique loi de probabilité sans mémoire sur \mathbb{N}^* , i.e. telle que, en notant $\forall i \in \mathbb{N}, A_i = [i; +\infty[$, on a $\forall k, n \in \mathbb{N}, P_{A_n}(A_{n+k}) = P(A_k)$.

Ainsi dans une suite d'expériences indépendantes les unes des autres et de même probabilité de succès, le temps d'attente d'un premier succès après n échecs ne dépend pas de n.

3.2.3 Définition - Loi de Poisson.

Soit $\lambda \in \mathbb{R}_+^*$. La **loi de Poisson** de paramètre λ , en abrégé $\mathscr{P}(\lambda)$, est la loi de probabilité P sur \mathbb{N} définie par $P(\{k\}) = \frac{\lambda^k}{k!} e^{-\lambda}$, pour tout $k \in \mathbb{N}$.

- **3.2.4 Remarques.** 1. La loi de Poisson est la loi des événements rares : si P est une loi de Poisson de paramètre λ et si P_n est une loi binomiale de paramètres n et $\frac{\lambda}{n}$, alors pour tout $k \in \mathbb{N}$, $P_n(\{k\}) \underset{n \to +\infty}{\longrightarrow} P(\{k\})$. L'adjectif rares vient du fait que $\frac{\lambda}{n} \underset{n \to +\infty}{\longrightarrow} 0$.
- 2. Situation type: nombre d'événements qui se produisent dans un intervalle de temps donné (où λ est le nombre d'événements qui se produisent en moyenne dans un tel intervalle de temps): nombre de pannes d'un appareil en un an, nombre d'accidents sur une portion de route donnée en un mois, nombre de clients entrant dans un magasin en une journée, etc.