Cours page 1/8

VARIABLES ALÉATOIRES DISCRÈTES

Le but de ce chapitre est de généraliser la notion de variable aléatoire sur un univers fini Ω , vue en première année, au cas où l'univers Ω n'est pas nécessairement fini, comme dans le chapitre « Espaces probabilisés ».

1 Généralités

1.1 Définitions

1.1.1 Définitions - Variable aléatoire discrète.

Soit (Ω, \mathcal{T}) un espace probabilisable.

- Une variable aléatoire discrète sur (Ω, \mathcal{T}) est une application X définie sur Ω telle que :
 - a. L'image $X(\Omega) = \{X(\omega) \mid \omega \in \Omega\}$ est finie ou dénombrable,
 - b. $\forall x \in X(\Omega)$, l'image réciproque $X^{-1}(\{x\}) = \{\omega \in \Omega \mid X(\omega) = x\}$ appartient à \mathscr{T} .
- Si de plus $X(\Omega) \subset \mathbb{R}$, alors on dit que X est une variable aléatoire discrète réelle.
- **1.1.2 Remarques.** 1. Pour simplifier, on note $\{X = x\}$ l'ensemble $\{\omega \in \Omega \mid X(\omega) = x\}$. Et pour tout $U \subset X(\Omega)$, on note $\{X \in U\}$ l'ensemble $X^{-1}(U) = \{\omega \in \Omega \mid X(\omega) \in U\}$. On a $\{X \in U\} \in \mathcal{T}$, puisque $\{X \in U\}$ est l'union finie ou dénombrable des $\{X = x\}$ pour $x \in U$.
- 2. Si Ω est fini ou dénombrable, alors toute application définie sur Ω est une variable aléatoire discrète sur $(\Omega, \mathscr{P}(\Omega))$.
- **1.1.3 Exemples.** 1. Soit $\Omega = [1; 6]^2$ l'univers associé à un lancer de deux dés à 6 faces.

Alors l'application $S: \Omega \to \mathbb{N}$, $(a,b) \mapsto a+b$, qui donne la somme des deux dés, est une variable aléatoire discrète sur $(\Omega, \mathscr{P}(\Omega))$.

On a $S(\Omega) = [2; 12]$, et par exemple $\{S = 4\} = \{(1, 3), (2, 2), (3, 1)\}.$

2. Soit $\Omega = [1; 6]^{\mathbb{N}^*}$ l'univers associé à une suite (infinie) de lancers d'un dé à 6 faces.

Alors l'application $R:\Omega\to\mathbb{N}$, qui donne le rang d'apparition du premier 6, ou 0 si le 6 n'apparaît pas, est une variable aléatoire discrète sur (Ω,\mathcal{T}) à condition que la tribu \mathcal{T} contienne toutes les parties $\{R=k\}$ pour $k\in\mathbb{N}$.

On a $R(\Omega) = \mathbb{N}$, et par exemple $\{R = 0\} = [1; 5]^{\mathbb{N}^*}$.

1.1.4 Définition - Loi d'une variable aléatoire discrète.

Soit X une variable aléatoire discrète sur un espace probabilisé (Ω, \mathcal{T}, P) , d'image $\Omega' = X(\Omega)$.

- On appelle **loi** de X (relative à P) la loi de probabilité P_X sur l'espace probabilisable $(\Omega', \mathscr{P}(\Omega'))$ définie, pour tout $U \subset \Omega'$, par $P_X(U) = P(\{X \in U\})$.
- On dit alors que X suit la loi P_X .

Démonstration (du fait que P_X est bien une loi de probabilité).

Pour tout $U \subset \Omega'$, on a par σ -additivité, $P(\{X \in U\}) = \sum_{x \in U} P(\{X = x\})$ (somme finie ou somme de série convergente). En particulier, les $P(\{X = x\})$, pour $x \in \Omega'$, forment une famille de réels positifs et de somme $\sum_{x \in \Omega'} P(\{X = x\}) = P(\{X \in \Omega'\}) = P(\Omega) = 1$.

1.1.5 Remarques. 1. Pour simplifier, on omet les accolades et on note $P(X \in U)$ et P(X = x) les probabilités $P(\{X \in U\})$ et $P(\{X = x\})$ respectivement.

- 2. En pratique, déterminer la loi d'une variable aléatoire X, c'est déterminer son image $X(\Omega)$ et les probabilités P(X=x) pour tout $x \in X(\Omega)$.
- 3. Réciproquement, on admettra que si X est une variable aléatoire sur (Ω, \mathscr{T}) et si $(p_x)_{x \in X(\Omega)}$ est une famille de réels positifs de somme 1, alors il existe une probabilité P sur (Ω, \mathscr{T}) telle que $p_x = P(X = x)$ pour tout $x \in X(\Omega)$.
- 1.1.6 Exemples. On reprend les exemples de 1.1.3, en supposant les dés équilibrés.
- 1. Loi de S est définie par $S(\Omega) = [2; 12]$, et par les valeurs $p_k = P(S = k)$ suivantes :

$$p_2 = p_{12} = \frac{1}{36}, p_3 = p_{11} = \frac{1}{18}, p_4 = p_{10} = \frac{1}{12}, p_5 = p_9 = \frac{1}{9}, p_6 = p_8 = \frac{5}{36} \text{ et } p_7 = \frac{1}{6}.$$

En particulier $P(S \text{ est pair}) = \frac{1}{2}$.

- 2. En négligeant l'événement négligeable $\{R=0\}$, la variable aléatoire R suit la loi géométrique de paramètre $\frac{1}{6}$, i.e. $R(\Omega)=\mathbb{N}^*$ et pour tout $n\in\mathbb{N}^*$, $P(R=n)=\frac{5^{n-1}}{6^n}$.
- 1.2 Espérance d'une variable aléatoire discrète réelle

1.2.1 Définitions - Espérance d'une variable aléatoire discrète réelle.

Soit X une variable aléatoire discrète sur (Ω, \mathcal{T}, P) , à valeurs dans une partie dénombrable $\{x_n \mid n \in \mathbb{N}\}\$ de \mathbb{R} , où $\varphi : n \mapsto x_n$ est une bijection.

• On dit que X admet une espérance, ou est d'espérance finie, si la série numérique $\sum x_n P(X = x_n)$ est absolument convergente.

Si c'est le cas, on appelle **espérance** de X, et on note E(X), la somme de cette série :

$$E(X) = \sum_{n=0}^{+\infty} x_n P(X = x_n).$$

- On dit que X est **centrée** si elle admet une espérance et si E(X) = 0.
- **1.2.2 Remarques.** 1. On admettra que la convergence absolue de la série, et le cas échéant sa somme, ne dépendent pas du choix de l'énumération $\varphi : n \mapsto x_n$.
- 2. En cas d'existence, l'espérance d'une variable aléatoire discrète réelle X est la moyenne des valeurs prises par X, pondérées par leur probabilité d'apparition.
- 3. Si X est d'image finie, ce qui est toujours le cas si Ω est fini (cadre du cours de 1ère année), alors X admet nécessairement une espérance, et E(X) est une somme finie.

Plus spécifiquement si $X(\Omega) \subset \{x_1, \dots, x_p\}$, alors les $P(X = x_n)$ sont nuls à partir du rang p+1, donc la série $\sum x_n P(X = x_n)$ est évidemment absolument convergente, et :

$$E(X) = \sum_{n=1}^{p} x_n P(X = x_n).$$

En particulier si X est constante égale à $\lambda \in \mathbb{R}$, alors $E(X) = \lambda$.

- 4. Si Ω est fini, alors $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$ (cf. théorème de transfert, 1ère année). Cette formule est encore valable lorsque Ω est dénombrable (admis), la somme étant alors la somme d'une série absolument convergente. En revanche, cette formule n'a plus de sens a priori lorsque Ω est infini non dénombrable.
- 1.2.3 Exemples. On reprend les exemples de 1.1.3, en supposant les dés équilibrés.
- 1. La variable aléatoire S admet une espérance, puisque $S(\Omega)$ est fini, et :

$$E(S) = \frac{2+12}{36} + \frac{3+11}{18} + \frac{4+10}{12} + \frac{5+9}{9} + \frac{(6+8)\times 5}{36} + \frac{7}{6} = 7.$$

2. La variable aléatoire R admet une espérance, puisque la série $\frac{1}{6}\sum n(\frac{5}{6})^{n-1}$ converge, et :

$$E(R) = \frac{1}{6} \sum_{n=1}^{+\infty} n(\frac{5}{6})^{n-1} = \frac{1}{6} \cdot \frac{1}{(1-\frac{5}{6})^2} = 6.$$

1.2.4 Proposition - Propriétés de l'espérance.

Soient X et Y deux variables aléatoires discrètes réelles <u>d'espérance finie</u> sur un <u>même</u> espace probabilisé (Ω, \mathcal{T}, P) .

- 1. Linéarité. Pour tout $\lambda \in \mathbb{R}$, $\lambda X + Y$ est d'espérance finie et $E(\lambda X + Y) = \lambda E(X) + E(Y)$.
- 2. a. Positivité. Si $X \ge 0$, alors $E(X) \ge 0$.
 - b. Croissance. Si $X \ge Y$, alors $E(X) \ge E(Y)$.
- 3. Inégalité de Markov. Si $X \geqslant 0$, alors $\forall a > 0$, $P(X \geqslant a) \leqslant \frac{E(X)}{a}$.

Démonstration (linéarité non exigible).

- 1. Voir le cours de 1ère année pour le cas où Ω est fini, et en annexe pour le cas général.
- 2. Montrons 2a. Si X est à valeurs positives, alors on peut considérer que tous les x_n sont positifs dans les notations de 1.2.1, d'où $E(X) = \sum_{n=0}^{+\infty} x_n P(X=x_n) \geqslant 0$. Le point 2b s'en déduit par linéarité.
- 3. Comme en 2a et puisque les x_n sont positifs, on a les minorations suivantes :

$$E(X) = \sum_{n=0}^{+\infty} x_n P(X = x_n) \geqslant \sum_{n=0}^{+\infty} x_n P(X = x_n) \geqslant a \sum_{n=0}^{+\infty} P(X = x_n) = a P(X \geqslant a).$$

- **1.2.5 Exemples.** Lors d'un lancer de deux des à 6 faces équilibrés, si l'on note respectivement X et Y le maximum et le minimum obtenus, alors :
- 1. On a $1 \le Y \le X \le 6$, donc $1 \le E(Y) \le E(X) \le 6$ par croissance de l'espérance,
- 2. La somme S des deux dés est S = X + Y, donc E(X) + E(Y) = E(S) = 7 par linéarité.

Rq. On a précisément $E(X) = \frac{161}{36}$ et $E(Y) = \frac{91}{36}$ (cf. 1.4.5 ci-dessous).

1.2.6 Théorème - Théorème de transfert.

Soit X une variable aléatoire discrète sur (Ω, \mathcal{T}, P) , à valeurs dans un ensemble dénombrable $\{x_n \mid n \in \mathbb{N}\}$, où $\varphi : n \mapsto x_n$ est une bijection, et soit f une application à valeurs réelles définie sur $\{x_n \mid n \in \mathbb{N}\}$. On note par abus f(X) la composée $f \circ X$. Alors :

- 1. L'application f(X) est une variable aléatoire discrète réelle.
- 2. Théorème de transfert. La variable aléatoire f(X) admet une espérance si et seulement si la série numérique $\sum f(x_n)P(X=x_n)$ converge absolument, auquel cas

$$E(f(X)) = \sum_{n=0}^{+\infty} f(x_n) P(X = x_n).$$

- 1. L'application $f \circ X$ est à valeurs dans l'ensemble fini ou dénombrable $\{f(x_n) \mid n \in \mathbb{N}\}$, et pour tout $y \in f(X(\Omega)), \{f(X) = y\} = \{X \in f^{-1}(\{y\})\} \in \mathcal{F}$ (cf. 1.1.2).
- 2. Voir le cours de 1ère année pour le cas où Ω est fini. Admis dans le cas général.
- **1.2.7 Remarques.** 1. Le théorème de transfert permet de calculer l'espérance d'une variable aléatoire discrète f(X) à partir de la loi de X, sans avoir à déterminer celle de f(X).
- 2. Si X est d'image finie, alors f(X) l'est aussi, donc admet nécessairement une espérance.
- 1.2.8 Exemples. Avec les exemples de 1.1.3 :
- 1. La variable aléatoire S^2 est d'espérance finie et $E(S^2) = \frac{4+144}{36} + \frac{9+121}{36} + \cdots + \frac{49}{6} = \frac{329}{6}$.
- 2. La variable aléatoire R^2 est d'espérance finie et $E(R^2) = \frac{1}{6} \sum_{n=1}^{+\infty} n^2 (\frac{5}{6})^{n-1} = \frac{1}{6} \cdot \frac{1+\frac{5}{6}}{(1-\frac{5}{6})^3} = 66.$

1.3 Variance et écart-type d'une variable aléatoire discrète réelle

1.3.1 Définitions - Variance et écart-type d'une v.a.d. réelle.

Soit X une variable aléatoire discrète réelle.

- On dit que X admet une variance, ou est de variance finie, si X^2 est d'espérance finie.
- Si c'est le cas, alors X est d'espérance finie, la variable aléatoire $(X E(X))^2$ l'est aussi, et on appelle variance de X le réel positif

$$V(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}$$

et on appelle **écart-type** de X le réel positif $\sigma(X) = \sqrt{V(X)}$.

Démonstration (des affirmations du second point).

- Montrons que si X^2 est d'espérance finie, alors X et $(X-m)^2$, où $m \in \mathbb{R}$, le sont. Posons $X(\Omega) \subset$ $\{x_n \mid n \in \mathbb{N}\}\$, où $\varphi: n \to x_n$ est une bijection, et $p_n = P(X = x_n)$ pour tout $n \in \mathbb{N}$. L'hypothèse sur X^2 implique, par théorème de transfert, la convergence de la série $\sum x_n^2 p_n$. Et il s'agit alors de montrer que les séries $\sum |x_n|p_n$ et $\sum (x_n-m)^2p_n$ convergent.
 - * La convergence de la première résulte de l'inégalité $|x_n| \le 1 + x_n^2$ (distinguer les cas $|x_n| \le 1$ et $|x_n| > 1$, auquel cas $|x_n| \le x_n^2$), et de la convergence des séries $\sum p_n$ et $\sum x_n^2 p_n$.
 - * La convergence de la seconde résulte de l'inégalité $(x_n-m)^2\leqslant x_n^2+2|mx_n|+m^2$, et de la convergence des séries $\sum p_n$, $\sum |x_n|p_n$ et $\sum x_n^2 p_n$.
- De plus par linéarité de l'espérance, $E((X-m)^2) = E(X^2) 2mE(X) + m^2$, qui se simplifie en $E(X^2) - E(X)^2 \text{ si } m = E(X).$
- 1.3.2 Remarques. 1. La variance et l'écart-type d'une variable aléatoire réelle X mesurent la dispersion des valeurs prises par X par rapport à leur moyenne E(X).

En particulier, l'inégalité de Bienaymé-Tchebychev donnée en 1.3.4 ci-dessous quantifie le fait qu'il est peu probable que X prenne des valeurs éloignées de leur moyenne E(X).

- 2. Si X est d'image finie, ce qui est toujours le cas si Ω est fini (cadre du cours de 1ère année), alors X admet nécessairement une variance, et V(X) est une somme finie.
- 1.3.3 Exemples. Avec les exemples de 1.1.3 :
- 1. La variable aléatoire S est de variance finie, et $V(S) = E(S^2) E(S)^2 = \frac{329}{6} 49 = \frac{35}{6}$.
- 2. La variable aléatoire R est de variance finie, et $V(R) = E(R^2) E(R)^2 = 66 36 = 30$.

1.3.4 Proposition - Propriétés de la variance.

Soit X une variable aléatoire discrète de variance finie.

- 1. Pour tous $a, b \in \mathbb{R}$, aX + b est de variance finie, et $V(aX + b) = a^2V(X)$.
- 2. Inégalité de Bienaymé-Tchebychev. Pour tout a > 0, $P(|X E(X)| \ge a) \le \frac{V(X)}{a^2}$.
- 3. On a V(X) = 0 si et seulement si X est presque sûrement constante (égale à E(X)).

- 1. Par linéarité, on a E(aX+b)=aE(X)+b, donc aX+b-E(aX+b)=a(X-E(X)). Donc aX+badmet une variance et que $V(aX + b) = E(a^2(X - E(X))^2) = a^2E((X - E(X))^2) = a^2V(X)$.
- 2. Cette inégalité est l'inégalité de Markov appliquée à la variable aléatoire $(X E(X))^2$ et au réel a^{2} , en remarquant que $\{|X - E(X)| \ge a\} = \{(X - E(X))^{2} \ge a^{2}\}.$
- 3. Si V(X) = 0, alors on déduit de 2 que P(|X E(X)| > 0) = 0, donc par passage au complémentaire, P(X = E(X)) = 1. Réciproquement, s'il existe $m \in X(\Omega)$ tel que P(X = m) = 1, alors E(X) = met $E(X^2) = m^2$ (par théorème de transfert), et donc V(X) = 0.

1.3.5 Exemples. Avec les exemples de 1.1.3 :

- On a $P(|S-7| \ge 5) = \frac{1}{18} \le \frac{V(S)}{25} = \frac{7}{30}$.
- On a $P(|R-6| \ge 6) = P(R \ge 12) = \frac{1}{6} \sum_{n=12}^{+\infty} (\frac{5}{6})^{n-1} = (\frac{5}{6})^{11} \le \frac{V(R)}{36} = \frac{30}{36} = \frac{5}{6}$.

1.4 Fonction de répartition d'une variable aléatoire discrète réelle

1.4.1 Définition - Fonction de répartition d'une v.a.d. réelle.

Soit X une variable aléatoire discrète réelle. On appelle **fonction de répartition** de X la fonction $F_X : \mathbb{R} \to [0; 1]$, définie, pour tout $x \in \mathbb{R}$, par $F_X(x) = P(X \leq x)$.

1.4.2 Exemple. Si X est d'image finie $X(\Omega) = \{x_1, \ldots, x_p\}$, où $\forall i \in [1; p-1], x_i < x_{i+1}$, alors F_X est nulle sur $]-\infty; x_1[$, constante sur chaque intervalle $[x_i; x_{i+1}[$, égale à 1 sur $[x_p; +\infty[$, et les "sauts" entre les différents paliers sont les probabilités $P(X = x_i)$, pour $i \in [1; p]$.

1.4.3 Proposition - Propriétés de la fonction de répartition.

Soit X une variable aléatoire discrète réelle.

- 1. La fonction de répartition F_X de X est croissante, tend vers 0 en $-\infty$ et vers 1 en $+\infty$.
- 2. Pour x < y dans \mathbb{R} , on a $P(X > x) = 1 F_X(x)$, $P(x < X \le y) = F_X(y) F_X(x)$, et

$$P(X = y) = F_X(y) - \lim_{x \to y^-} F_X(x).$$

En particulier, la fonction de répartition de X détermine la loi de X.

3. Si X est à valeurs dans \mathbb{N} , alors X admet une espérance ssi la série $\sum P(X > n)$ converge, auquel cas :

$$E(X) = \sum_{n=0}^{+\infty} P(X > n) = \sum_{n=1}^{+\infty} P(X \ge n).$$

Démonstration.

1. Si $x \leq y$, alors $\{X \leq x\} \subset \{X \leq y\}$ et donc par croissance des probabilités, $F_X(x) \leq F_X(y)$, donc F_X est croissante. De plus par continuité (dé)croissante des probabilités :

$$\lim_{n\to +\infty} F_X(n) = P\Big(\bigcup_{n\in \mathbb{N}} \{X\leqslant n\}\Big) = P(\Omega) = 1 \text{ et } \lim_{n\to +\infty} F_X(-n) = P\Big(\bigcap_{n\in \mathbb{N}} \{X\leqslant -n\}\Big) = P(\emptyset) = 0.$$

- 2. On a $\{X > x\} = \overline{\{X \leqslant x\}}$ et $\{x < X \leqslant y\} = \{X \leqslant y\} \setminus \{X \leqslant x\}$, d'où les deux premières égalités en passant aux probabilités. La troisième se déduit de la seconde par continuité décroissante, en remarquant que $\{X = y\} = \bigcap_{n \in \mathbb{N}^*} \{y \frac{1}{n} < X \leqslant y\}$.
- 3. Posons $u_n = P(X = n)$ et $R_n = P(X > n) = \sum_{k=n+1}^{+\infty} u_k$ (reste de la série convergente $\sum u_n$). Il s'agit de montrer que les séries $\sum nu_n$ et $\sum R_n$ sont de même nature, et ont même somme en cas de convergence. Cela résulte de l'identité suivante (facile à vérifier au vu des définitions) :

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^{n-1} R_k = \sum_{k=0}^n k u_k + n R_n \tag{*}$$

- Si $\sum nu_n$ converge, alors $\forall n \in \mathbb{N}^*$, $0 \leqslant nR_n \leqslant \sum_{k=n+1}^{+\infty} ku_k$ donc $nR_n \to 0$ par encadrement. Ainsi par (\star) , $\sum R_n$ converge et en passant à la limite, $\sum_{k=0}^{+\infty} R_k = \sum_{k=0}^{+\infty} ku_k$.
- Si $\sum R_n$ converge, alors par (\star) , les sommes partielles de la série $\sum nu_n$ sont majorées, donc cette série converge puisqu'elle est à termes positifs, ce qui ramène au point précédent.

1.4.4 Remarque. Dans certains cas, les probabilités $P(X \le x)$ ou $P(X \ge x)$ sont plus faciles à calculer que les probabilités P(X = x). D'où l'intérêt de la fonction de répartition, et de la formule donnant l'espérance de 1.4.3, dans ces cas-là.

- 1.4.5 Exemples. On reprend les exemples de 1.2.3 et 1.2.5.
- 1. Si X et Y désignent le maximum et le minimum obtenus en lançant deux dés, alors :

•
$$\forall k \in [1; 6], P(X \le k) = \frac{k^2}{36}$$
, d'où $E(X) = \sum_{n=0}^{+\infty} P(X > n) = \sum_{n=0}^{5} (1 - \frac{n^2}{36}) = 6 - \frac{5 \times 6 \times 11}{36 \times 6} = \frac{161}{36}$.

•
$$\forall k \in [1; 6], P(Y \ge k) = \frac{(7-k)^2}{36}, \text{ d'où } E(Y) = \sum_{n=1}^{+\infty} P(Y \ge n) = \sum_{n=1}^{6} \frac{(7-n)^2}{36} = \frac{6 \times 7 \times 13}{36 \times 6} = \frac{91}{36}.$$

2. Pour tout
$$n \in \mathbb{N}$$
, $P(R > n) = (\frac{5}{6})^n$, d'où $E(R) = \sum_{n=0}^{+\infty} P(R > n) = \sum_{n=0}^{+\infty} (\frac{5}{6})^n = \frac{1}{1 - \frac{5}{6}} = 6$.

1.5 Fonction génératrice d'une variable aléatoire à valeurs dans $\mathbb N$

1.5.1 Définition - Fonction génératrice d'une v.a.d. à valeurs dans \mathbb{N} .

Soit X une variable aléatoire à valeurs dans \mathbb{N} . On appelle **série génératrice** de X la série entière $\sum P(X=n)z^n$, et **fonction génératrice** de X sa somme, i.e. la fonction G_X définie (au moins sur l'intervalle ouvert de convergence) par :

$$G_X(t) = E(t^X) = \sum_{n=0}^{+\infty} P(X=n)t^n.$$

- **1.5.2 Remarque.** Une variable aléatoire X à valeurs dans \mathbb{N} est d'image finie ssi sa fonction génératrice est polynomiale.
- **1.5.3 Exemple.** Pour la variable R de 1.1.3, on a $G_R(t) = \frac{t}{6} \sum_{n=1}^{+\infty} (\frac{5}{6}t)^{n-1} = \frac{t}{6-5t}$.

1.5.4 Proposition - Propriétés de la fonction génératrice.

Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- 1. Le rayon de convergence de la série génératrice de X est supérieur ou égal à 1, et $G_X(1) = 1$. En particulier, la fonction génératrice de X détermine la loi de X.
- 2. Espérance et variance par la fonction génératrice.
 - a. X est d'espérance finie ssi G_X est dérivable en 1, auquel cas $E(X) = G'_X(1)$.
 - b. X est de variance finie ssi G_X est deux fois dérivable en 1, auquel cas (formule à savoir retrouver si besoin $V(X) = G''_X(1) + G'_X(1) G'_X(1)^2$.

Démonstration (non exigible pour l'espérance et la variance).

Notons R le rayon de convergence de la série génératrice, et posons $p_n = P(X = n)$ pour tout $n \in \mathbb{N}$, de sorte que $G_X(t) = \sum_{n=0}^{+\infty} p_n t^n$ pour tout $t \in]-R; R[$.

- 1. On a $R \geqslant 1$ car la suite $(p_n)_{n \in \mathbb{N}}$ est bornée, et $G_X(1) = \sum_{n=0}^{+\infty} p_n = 1$. Le reste s'en déduit puisqu'alors G_X est de classe \mathscr{C}^{∞} sur] - R; R[, et $\forall n \in \mathbb{N}$, $p_n = \frac{G_X^{(n)}(0)}{n!}$.
- 2. Voir en annexe pour le cas général $(R \ge 1)$. Traitons le cas R > 1. On a $\forall t \in]-R$; $R[\ , G_X'(t) = \sum_{n=1}^{+\infty} np_nt^{n-1}$ et $G_X''(t) = \sum_{n=2}^{+\infty} n(n-1)p_nt^{n-2}$. En particulier si R > 1, alors G_X est deux fois dérivable en 1 et $G_X'(1) = \sum_{n=0}^{+\infty} np_n$ et $G_X''(1) = \sum_{n=0}^{+\infty} n(n-1)p_n$. Cela montre que X est d'espérance et de variance finies (car les séries $\sum np_n$ et $\sum n^2p_n$ convergent), et que $G_X'(1) = E(X)$ et $G_X''(1) = E(X^2 - X) = E(X^2) - E(X) = V(X) + E(X)^2 - E(X)$.
- **1.5.5 Exemple.** La variable aléatoire R de 1.1.3 est de variance finie, puisque le rayon de convergence de sa série génératrice est $\frac{6}{5}$, et $E(R) = G'_R(1) = 6$ et $V(R) = \cdots = 30$.

2 Fonction génératrice, espérance et variance des lois usuelles

2.1 Lois finies (rappels)

2.1.1 Proposition - Cas d'une variable aléatoire suivant une loi uniforme.

Soit X une variable aléatoire suivant la loi uniforme sur [a;b], où $a, b \in \mathbb{N}$ sont tels que a < b. On pose $n = \operatorname{Card}([a;b]) = b - a + 1$.

- 1. **Loi**: $X(\Omega) = [a; b]$ et $\forall k \in [a; b]$, $P(X = k) = \frac{1}{n}$.
- 2. Fonction génératrice : $\forall t \in \mathbb{R}, G_X(t) = \frac{1}{n} \sum_{k=a}^{b} t^k$.
- 3. Espérance et Variance : $E(X) = \frac{a+b}{2}$ et $V(X) = \frac{n^2-1}{12}$.

Démonstration.

- 1. C'est la définition de la loi uniforme sur [a; b].
- 2. Résulte immédiatement de la loi.
- 3. Voir le cours de 1ère année, ou utiliser les expressions de E(X) et V(X) via G_X vues en 1.5.4.
- **2.1.2 Rappel.** La loi uniforme modélise le résultat d'un tirage au hasard dans un ensemble fini (urne, jeu de cartes), ou d'un lancer de dé ou d'une pièce non truqué(e), ou $\acute{e}quilibr\acute{e}(e)$.

2.1.3 Proposition - Cas d'une variable aléatoire suivant une loi de Bernoulli.

Soit X une variable aléatoire suivant la loi $\mathcal{B}(p)$, où $p \in [0, 1]$. On pose q = 1 - p.

- 1. **Loi**: $X(\Omega) = [0; 1]$ et P(X = 1) = p et P(X = 0) = q.
- 2. Fonction génératrice : $\forall t \in \mathbb{R}, G_X(t) = q + pt$.
- 3. Espérance et Variance : E(X) = p et V(X) = pq.

Démonstration.

- 1. C'est la définition de la loi de Bernoulli de paramètre p.
- 2. Résulte immédiatement de la loi.
- 3. Voir le cours de 1ère année, ou utiliser les expressions de E(X) et V(X) via G_X vues en 1.5.4.
- **2.1.4 Rappel.** La loi de Bernoulli modélise le résultat (succès/échec) d'une expérience dont la probabilité de succès (encodé par 1) est p, et celle de l'échec (encodé par 0) est donc 1-p.

2.1.5 Proposition - Cas d'une variable aléatoire suivant une loi binomiale.

Soit X une variable aléatoire suivant la loi $\mathcal{B}(n,p)$, où $n \in \mathbb{N}^*$ et $p \in [0;1]$. On pose q=1-p.

- 1. **Loi**: $X(\Omega) = [0; n]$ et $\forall k \in [0; n]$, $P(X = k) = \binom{n}{k} p^k q^{n-k}$.
- 2. Fonction génératrice : $\forall t \in \mathbb{R}, G_X(t) = (q + pt)^n$.
- 3. Espérance et Variance : E(X) = np et V(X) = npq.

- 1. C'est la définition de la loi binomiale de paramètres n et p.
- 2. Résulte immédiatement de la loi, via la formule du binôme.
- 3. Voir le cours de 1ère année, ou utiliser les expressions de E(X) et V(X) via G_X vues en 1.5.4.
- **2.1.6 Rappel.** La loi binomiale modélise le nombre de succès obtenus lors de la répétition de n expériences indépendantes les unes des autres, et dont la probabilité de succès est p.

2.2 Lois dénombrables

2.2.1 Proposition - Cas d'une variable aléatoire suivant une loi géométrique.

Soit X une variable aléatoire suivant la loi $\mathcal{G}(p)$, où $p \in [0, 1]$. On pose q = 1 - p.

- 1. Loi : $X(\Omega) = \mathbb{N}^*$ et $\forall n \in \mathbb{N}^*$, $P(X = n) = q^{n-1}p$.
- 2. Fonction génératrice: $\forall t \in]-\frac{1}{a}; \frac{1}{a}[, G_X(t) = \frac{pt}{1-at}]$
- 3. Espérance et Variance : la variable X est de variance et (donc) d'espérance finie, et

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{q}{p^2}$.

Démonstration.

- 1. C'est la définition de la loi géométrique de paramètre p.
- 2. Résulte de la loi et des résultats connus pour les séries géométriques.
- 3. Méthode 1 (définition). Comme $q \in [0;1[$, les séries $\sum_{n\geqslant 1} nq^{n-1}$ et $\sum_{n\geqslant 1} n^2q^{n-1}$ convergent et ont respectivement pour somme $\frac{1}{(1-q)^2}$ et $\frac{1+q}{(1-q)^3}$ (voir le cours sur les séries numériques ou sur les séries entières). Ainsi X admet une espérance et une variance, et

$$E(X) = \textstyle \sum_{n=1}^{+\infty} npq^{n-1} = \frac{p}{(1-q)^2} = \frac{1}{p} \text{ et } V(X) = E(X^2) - E(X)^2 = \frac{p(1+q)}{p^3} - \frac{1}{p^2} = \frac{q}{p^2}.$$

- Méthode 2 (fonction génératrice). Vu 2, G_X est deux fois dérivable sur $]-\frac{1}{q};\frac{1}{q}[$ et $\forall t \in]-\frac{1}{q};\frac{1}{q}[$, $G_X'(t)=\frac{p(1-qt)+ptq}{(1-qt)^2}=\frac{p}{(1-qt)^2}$ et $G_X''(t)=\frac{2pq}{(1-qt)^3}$.
 - En particulier (cas $t=1<\frac{1}{q}$), X admet une espérance et une variance, et $E(X)=G_X'(1)=\frac{1}{p}$ et $V(X)=G_X''(1)+G_X'(1)-G_X'(1)^2=\frac{2q}{p^2}+\frac{1}{p}-\frac{1}{p^2}=\frac{q}{p^2}$.
- Méthode 3 pour l'espérance (1.4.3). $\forall n \in \mathbb{N}, P(X > n) = q^n$, donc la série $\sum P(X > n)$ converge (car $q \in [0;1[$), i.e. X admet une espérance, et $E(X) = \sum_{n=0}^{+\infty} P(X > n) = \sum_{n=0}^{+\infty} q^n = \frac{1}{1-q} = \frac{1}{p}$.
- **2.2.2 Rappel.** La loi géométrique modélise le rang d'apparition du premier succès lors d'une suite d'expériences indépendantes les unes des autres, et dont la probabilité de succès est p.

2.2.3 Proposition - Cas d'une variable aléatoire suivant une loi de Poisson.

Soit X une variable aléatoire suivant la loi $\mathscr{P}(\lambda)$, où $\lambda \in \mathbb{R}_+^*$.

- 1. Loi: $X(\Omega) = \mathbb{N}$ et $\forall n \in \mathbb{N}, P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}$.
- 2. Fonction génératrice : $\forall t \in \mathbb{R}, G_X(t) = e^{\lambda(t-1)}$.
- 3. Espérance et Variance : la variable X est de variance et (donc) d'espérance finie, et

$$E(X) = V(X) = \lambda.$$

- 1. C'est la définition de la loi de Poisson de paramètre λ .
- 2. Résulte de la loi et des résultats connus pour les séries exponentielles.
- 3. Méthode 1 (définition). Les séries $\sum_{n\geqslant 0} n \frac{\lambda^n}{n!} = \sum_{n\geqslant 1} \frac{\lambda^n}{(n-1)!} = \lambda \sum_{k\geqslant 0} \frac{\lambda^k}{k!}$ et $\sum_{n\geqslant 0} n(n-1) \frac{\lambda^n}{n!} = \sum_{n\geqslant 2} \frac{\lambda^n}{(n-2)!} = \lambda^2 \sum_{k\geqslant 0} \frac{\lambda^k}{k!}$ sont convergentes et ont respectivement pour somme λe^{λ} et $\lambda^2 e^{\lambda}$. Ainsi X admet une espérance et une variance, et

$$E(X) = e^{-\lambda} \sum_{n=0}^{+\infty} n \frac{\lambda^n}{n!} = \lambda \text{ et } V(X) = E(X^2) - E(X)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

- Méthode 2 (fonction génératrice). Vu 2, G_X est deux fois dérivable sur $\mathbb R$ et $\forall t \in \mathbb R$, $G_X'(t) = \lambda e^{\lambda(t-1)}$ et $G''(t) = \lambda^2 e^{\lambda(t-1)}$. En particulier (cas t=1), X admet une espérance et une variance, et $E(X) = G_X'(1) = \lambda$ et $V(X) = G_X''(1) + G_X'(1) G_X'(1)^2 = \lambda^2 + \lambda \lambda^2 = \lambda$.
- **2.2.4 Rappel.** La loi de Poisson modélise le nombre d'événements (pannes, achats, trouvailles) qui se produisent dans un intervalle de temps donné.