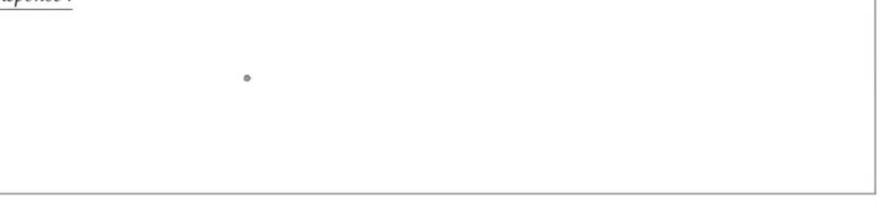
1 Home Run (14 pts)

 (3 pts) On considère le pseudo-code ci-dessous. Transformez le pour mettre en avant les blocs de base et respecter les contraintes des microprocesseurs. Identifiez clairement le nombre de blocs de base alors obtenus. Rappel cjump <cond>, <iffrue>, <iffalse>.

Réponse :

```
a \leftarrow 41
  b \leftarrow [x] # Memory access
3 c ← 1
L1: cjump c \neq 10, L7, L9
5 L2: jump L1
6 L3: cjump b > 0, L2, L6
7 L4: b \leftarrow d
8 L5: jump L2
• L6: cjump b < 0, L2, L5
 L7: x \leftarrow x+4
   c \leftarrow c+1
   d \leftarrow [x]
   cjump b \neq d, L4, L8
L8: cjump b = 0, L2, L3
  L9: a \leftarrow a + 1
       return # a and b are liveout
```

 (1 pts) Dessinez le graphe de flot de contrôle de l'exemple ci dessus, c'est à dire l'exemple sans vos modifications de la question (1)! Vous utiliserez ℓ_i pour indiquer la ligne i.


Réponse :		

3. **(4 pts)** Pour chaque nœud, indiquez les variables qui sont définies, celles qui sont utilisées, celles live_in et celles qui sont live_out. Pour rappel :

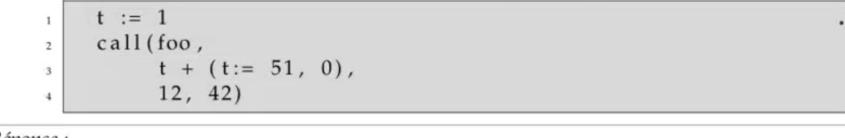
$$in[n] = use[n] \cup (out[n] \setminus def[n])$$
 $out[n] = \bigcup_{s \in succ(n)} (in[s])$

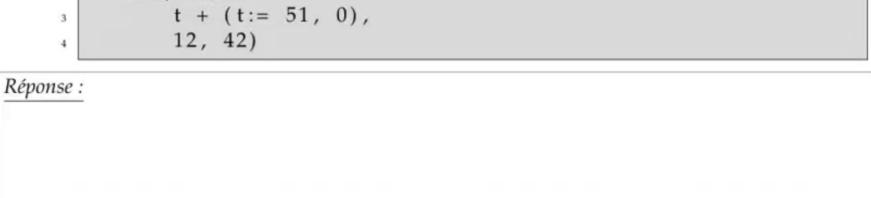
éponse :				
de	ef l	ise	live_in	live_out
ℓ_1				
ℓ_2				
ℓ_3 ℓ_4				
ℓ_4				
ℓ_5				
ℓ_6				
ℓ_7				
ℓ_8				
l9				
ℓ_{10}				
ℓ_{11}				
ℓ_{12}				
ℓ_{13}				
ℓ_{14}				
ℓ_{15}				
ℓ_{16}				

	Re-dessinez le graphe de de chaque variable.	flot de contrôle	de la question	(2) en y faisant	apparaître la
Réponse :					

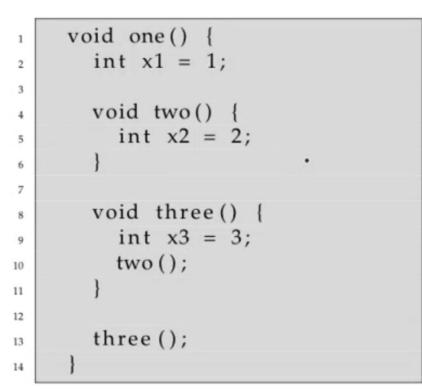
5. (1 pts) Déduisez en le graphe d'interférence du p	orogramme.	
Réponse :		

6. (1 pts) Calculez la spill priority des variables a, b, c, d et x. Pour rappel : $spill_priority = ((use_outside_loop + def_outside_loop) +$ $(10 * use_inside_loop + def_inside_loop))/degree$ Réponse :


7. (2 pts) Réécrivez le code en effectuant un spill de a à l'adresse [sp+4]. Les lignes ci-dessous sont là pour vous aider à écrire droit, il peut y en avoir plus que nécessaire.
Réponse :


ℓ_1	$ \ell_{11} $	
ℓ_2	ℓ_{12}	
ℓ_3	ℓ_{13}	
ℓ_4	ℓ_{14}	
ℓ_5	ℓ_{15}	
ℓ_6	ℓ_{16}	
ℓ_7	ℓ_{17}	
ℓ_8	ℓ_{18}	
<i>l</i> 9	ℓ_{11} ℓ_{12} ℓ_{13} ℓ_{14} ℓ_{15} ℓ_{16} ℓ_{17} ℓ_{18} ℓ_{19}	
ℓ_{10}	ℓ_{20}	

(1 pts) En ignorant la variable a, que fait le programme de la question 1?			
éponse :			


 (1 pt) À quoi sert le déroulage de boucle? Vous donnerez un exemple haut niveau (code C) pe expliquer votre propos. 					uı
		Page 3			
Réponse :					

3. (1 pts) Qu'est ce que la linéarisation? Linéarisez le code suivant.

4. (1 pt) Expliquez le rôle du middle-end dans un compilateur.				
Réponse :				

6. (1 pt) Quelles sont les trois traductions possibles pour l'expression α > β? Il ne vous est pas demandé du code mais uniquement l'explication des trois cas.
<u>Réponse</u>: