Intermediate Representations

Akim Demaille Etienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA — Ecole Pour I'Informatique et les Techniques Avancées

April 29, 2019

Intermediate Representations

@ Intermediate Representations

© Memory Management

© Translation to Intermediate Language
© The Case of the Tiger Compiler

© lir: Low Level Intermediate Representation

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Intermediate Representations

@ Intermediate Representations
o Compilers Structure
@ Intermediate Representations
o Tree

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Compilers Structure

@ Intermediate Representations
o Compilers Structure

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Ends:
front end analysis
middle end generic synthesis

back end specific synthesis

The gcc team suggests
front end name (“a front end”).

front-end adjective (“the front-end interface”).

A. Demaille, E. Renault, R. Levillain Intermediate Representations

The front end is dedicated to analysis:

lexical analysis (scanning)
syntactic analysis (parsing)

ast generation

°
°
@ static semantic analysis (type checking, context sensitive checks)
@ source language specific optimizations

°

hir generation

A. Demaille, E. Renault, R. Levillain Intermediate Representations

... Back Ends

The back end is dedicated to specific synthesis:

instruction selection (mir to lir)
register allocation
assembly specific optimizations

assembly code emission

A. Demaille, E. Renault, R. Levillain Intermediate Representations

... Middle Ends...

The middle end is dedicated to generic synthesis:
@ stepwise refinement of hir to mir

@ generic optimizations

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Retargetable Compilers

A. Demaille, E. Renault, R. Levillain

Retargetable Compilers

A. Demaille, E. Renault, R. Levillain

Other Compiling Strategies

Intermediate language-based strategy: SmartEiffel, GHC
Bytecode strategy: Java bytecode (JVM), CIL (.NET)

Hybrid approaches: GCJ (Java bytecode or native code)
Retargetable optimizing back ends: MLRISC, VPO (Very Portable
Optimizer), and somehow C-- (Quick C--).

@ Modular systems: LLVM (compiler as a library, centered on a typed
IR). Contains the LLVM core libraries, Clang, LLDB, etc. Also:
o VMKit: a substrate for virtual machines (JVM, etc.).
o Emscripten: an LLVM-to-JavaScript compiler. Enables C/C++ to JS
compilation.

Intermediate Representations (IR) are fundamental.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 10 / 107

Intermediate Representations

@ Intermediate Representations

@ Intermediate Representations

A. Demaille, E. Renault, R. Levillain Intermediate Representations 11 / 107

Format? Representation? Language?

Intermediate representation:

@ a faithful model of the source program

@ “written” in an abstract language, the intermediate language
@ may have an external syntax
°

may be interpreted/compiled
(havm, byte code)

©

may have different levels
(gcc's Tree is very much like C).

A. Demaille, E. Renault, R. Levillain Intermediate Representations 12 / 107

What Language Flavor?

@ Imperative?
o Stack Based? (Java Byte-code)
o Register Based? (gcc's rtl, tc's Tree)
@ Functional?
Most functional languages are compiled into a lower level language,
eventually a simple A-calculus.

@ Other?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 13 / 107

What Level?

A whole range of expressivities, typically aiming at making some
optimizations easier:

o Keep array expressions?

Yes: adequate for dependency analysis and related optimizations,
No: Good for constant folding, strength reduction, loop invariant
code motion, etc.

@ Keep loop constructs?

What level of machine independence?

@ Explicit register names?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 14 / 107

Designing an Intermediate Representation

‘ ‘ Intermediate-language design is largely an art, not a science.

— [Muchnick, 1997]

A. Demaille, E. Renault, R. Levillain Intermediate Representations 15 / 107

Different Levels [Muchnick, 1997]

float a[20][10];

alil[j+2];

A. Demaille, E. Renault, R. Levillain Intermediate Representations 16 / 107

Different Levels [Muchnick, 1997]

float a[20][10];

alil[j+2];

t1 <- ali,j+2]

A. Demaille, E. Renault, R. Levillain Intermediate Representations 16 / 107

Different Levels [Muchnick, 1997]

float a[20][10];

alil[j+2];

tl <- ali,j+2] tl <- j + 2
t2 <- i * 20
t3 <- t1 + t2
t4 <- 4 * t3
tb <- addr a
t6 <- tb + t4
t7 <- *t6

A. Demaille, E. Renault, R. Levillain Intermediate Representations 16 / 107

Different Levels [Muchnick, 1997]

float a[20][10];

alil[j+2];

tl <- ali,j+2] tl <- j + 2 rl <- [fp - 4]
t2 <- 1 * 20 r2 <-rl1 + 2
t3 <- t1 + t2 r3 <- [fp - 8]
t4 <- 4 * t3 rd <- r3 * 20
t5 <- addr a rb5 <- r4 + r2
t6 <- tb + t4 r6 <- 4 * rb5
t7 <- *t6 r7 <- fp - 216

f1 <- [r7 + r6]

A. Demaille, E. Renault, R. Levillain Intermediate Representations 16 / 107

Different Levels: The GCC Structure

Front End
Objective-C P Java @
tree: trees tees frees
++ C
t genericizer genericizer

bjective{ Fortran 95 Java
nericizer genericizer genericize

GENERIC
|

SSA pass |

Stack Based: Java Byte-Code [Edwards, 2003]

class Gcd
{
static public int gcd(int a, int b)
{
while (a !'= b)
{
if (a > b)
a -= b;
else
b -= a;
}
return a;

}

static public int main(String[] arg)
{
return gcd(12, 34);
}
}

A. Demaille, E. Renault, R. Levillain Intermediate Representations 18 / 107

Stack Based: Java Byte-Code

% gcj-3.3 -c gcd.java
% jcf-dump-3.3 -c gcd

Method name:'"gcd" public static
Signature: 5=(int,int)int
Attribute "Code", length:66,
max_stack:2, max_locals:2,
code_length:26

0: iload_O

1: iload_1

2: if_icmpeq 24
5: iload_0

6: iload_1

7: if_icmple 17
10: iload_O

11: iload_1

12: isub

13: istore_0

17:
18:
19:
20:
21:
24:
25:

iload_1
iload_0O
isub
istore_1
goto 0
iload_0
ireturn

Attribute "LineNumberTable",

line:

length:22, count: 5
at pc: 0

5
line: 7 at pc: 5
line: 8

at pc: 10

line: 10 at pc: 17
line: 12 at pc: 24

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 19 / 107

Stack Based [Edwards, 2003]

Advantages

Trivial translation of expressions
Trivial interpreters

No pressure on registers

Often compact

A. Demaille, E. Renault, R. Levillain Intermediate Representations 20 / 107

Stack Based [Edwards, 2003]

Advantages

Trivial translation of expressions
Trivial interpreters

No pressure on registers

Often compact

Disadvantages

Does not fit with today’s architectures
Hard to analyze
Hard to optimize

A. Demaille, E. Renault, R. Levillain Intermediate Representations 20 / 107

Stack Based: Examples

ucode, used in hp pa-risk, and mips, was designed for stack evaluation (HP
3000 is stack based).

Today it is less adequate.
mips translates it back and forth to triples for optimization.
hp converts it into sllic (Spectrum Low Level ir) [Muchnick, 1997].

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 21 / 107

Register Based: tc's Tree

let function gcd(a: int, b: int) : int =
(
while a <> b
do if a > b then a := a - b
else b := b - a;

in
print_int(gcd(42, 51))
end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 22 / 107

Register Based: tc's Tree (1/4)

/* == High Level Intermediate representation. == */
Routine: gcd
label 10
Prologue
move temp tO0 temp fp
move temp fp temp sp
move
temp sp
binop sub temp sp const 12
move
mem temp fp
temp 10
move
mem binop add temp fp const -4
temp il
move
mem binop add temp fp const -8
temp i2

23 / 107

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Register Based: tc's Tree (2/4)

Body
move temp rv
eseq
seq
label 12

cjump ne mem binop add temp fp const —4
mem binop add temp fp const —8
name |3 name I1
label I3
seq
cjump gt mem binop add temp fp const —4
mem binop add temp fp const —8
name |4 name 15
label 14
move mem binop add temp fp const —4
binop sub mem binop add temp fp const —4
mem binop add temp fp const —8
jump name 16

A. Demaille, E. Renault, R. Levillain Intermediate Representations 24 / 107

Register Based: tc's Tree (3/4)

label 15
move mem binop add temp fp const -8
binop sub mem binop add temp fp const -8
mem binop add temp fp const -4
label 16
seq end
jump name 12
label 11
seq end
mem binop add temp fp const -4

Epilogue
move temp sp temp fp
move temp fp temp tO
label end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 25 / 107

Register Based: tc's Tree (4/4)

Routine: _main
label main
Prologue
Body
seq
SXp
call
name print_int
call name 10 temp fp const 42 const 51
call end
call end
SXPp
const O
seq end
Epilogue
label end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 26 / 107

Register Based: What Structure?

How is the structure coded?

Addresses Expressions and instructions have names, or (absolute)
addresses. (Stack based is a bit like a relative address).

A. Demaille, E. Renault, R. Levillain Intermediate Representations 27 / 107

Register Based: What Structure?

How is the structure coded?

Addresses Expressions and instructions have names, or (absolute)
addresses. (Stack based is a bit like a relative address).

@ 2 address instructions? (triples)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 27 / 107

Register Based: What Structure?

How is the structure coded?

Addresses Expressions and instructions have names, or (absolute)
addresses. (Stack based is a bit like a relative address).
@ 2 address instructions? (triples)
@ 3 address instructions? (quadruples)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 27 / 107

Register Based: What Structure?

How is the structure coded?

Addresses Expressions and instructions have names, or (absolute)
addresses. (Stack based is a bit like a relative address).
@ 2 address instructions? (triples)
@ 3 address instructions? (quadruples)
Tree Expressions and instructions are unnamed, related to each other
as nodes of trees

A. Demaille, E. Renault, R. Levillain Intermediate Representations 27 / 107

Register Based: What Structure?

How is the structure coded?

Addresses Expressions and instructions have names, or (absolute)
addresses. (Stack based is a bit like a relative address).

@ 2 address instructions? (triples)
@ 3 address instructions? (quadruples)

Tree Expressions and instructions are unnamed, related to each other
as nodes of trees

dag Compact, good for local value numbering, but that’s all.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 27 / 107

Quadruples vs. Triples [Muchnick, 1997]

L1: i <-1i+ 1

tl <- 1 + 1

t2 <-p + 4
t3 <- *t2

p <- t2

t4 <- t1 < 10
*r <- t3

if t4 goto L1

A. Demaille, E. Renault, R. Levillain Intermediate Representations 28 / 107

Quadruples vs. Triples [Muchnick, 1997]

Ll: i <-i + 1 (1) i+ 1
(2) 1i sto (1)
tl <- 1 + 1 (3 i+1
t2 <-p + 4 4 p+4
t3 <- *t2 (5) *(4&
p <- t2 (6) p sto (4)
t4 <- t1 < 10 (7 (3) < 10
*r <- t3 (8) #*r sto (5)
if t4 goto L1 Q) if (1), (1)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 28 / 107

Register Based: gcc's rtl

int
gcd(int a, int b)
{
while (a != b)
{
if (a > b)
a -= b;
else
b -= a;
}
return a;

}

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 29 / 107

Register Based: gcc's rtl

;; Function gcd

(note 1 0 2 ("gecd.c") 3)

(note 2 1 3 NOTE_INSN_DELETED)

(note 3 2 4 NOTE_INSN_FUNCTION_BEG)

(note 4 3 5 NOTE_INSN_DELETED)

(note 5 4 6 NOTE_INSN_DELETED)

(note 6 5 7 NOTE_INSN_DELETED)

(insn 7 6 8 (const_int O [0x0]) -1 (nil)
(nil))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 30 / 107

Register Based: gcc's rtl cont'd

(note 8 79 ("ged.c") 4)
(note 9 8 40 NOTE_INSN_LOOP_BEG)
(note 40 9 10 NOTE_INSN_LOOP_ CONT)
(code_label 10 40 13 2 "" "' [0 uses])
(insn 13 10 14 (set (reg:SI 59)
(mem/f:SI (reg/f:SI 53 virtual—incoming—args) [0 a+0 S4 A32]))
—1 (nil) (nil))
(insn 14 13 15 (set (reg:CCZ 17 flags)
(compare:CCZ (reg:SI 59)
(mem/f:SI (plus:SI (reg/f:SI 53 virtual—incoming—args)
(const_int 4 [0x4])) [0 b+0 S4 A32]))) —1 (nil)
(nil))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 31 / 107

Register Based: gcc's rtl cont'd

(jump_insn 15 14 16 (set (pc)
(if_then_else (ne (reg:CCZ 17 flags)
(const_int 0 [0x0]))
(label_ref 18)
(pc))) -1 (mil)
(nil))
(jump_insn 16 15 17 (set (pc)
(label_ref 44)) -1 (nil)
(nil))
(barrier 17 16 18)
(code_label 18 17 19 4 "" "" [0 uses])
(note 19 18 20 NOTE_INSN_LOOP_END_TQOP_COND)
(note 20 19 21 NOTE_INSN_DELETED)
(note 21 20 22 NOTE_INSN_DELETED)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 32 / 107

Register Based: gcc's rtl cont'd

(note 22 21 25 ("gcd.c") 6)
(insn 25 22 26 (set (reg:SI 60)
(mem/f:SI (reg/f:SI 53 virtual-incoming-args) [0 a+0 S4 A32]))
-1 (nil) (nil))
(insn 26 25 27 (set (reg:CCGC 17 flags)
(compare:CCGC (reg:SI 60)
(mem/f:SI (plus:SI (reg/f:SI 53 virtual-incoming-args)
(const_int 4 [0x4])) [0 b+0 S4 A32]))) -1 (nil)
(nil))
(jump_insn 27 26 28 (set (pc)
(if_then_else (le (reg:CCGC 17 flags)
(const_int 0 [0x0]))
(label_ref 34)
(pc))) -1 (nil)
(nil))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 33 / 107

Register Based: gcc's rtl cont'd

(note 28 27 30 (“"ged.c") 7)
(insn 30 28 31 (set (reg:SI 61)
(mem/f:SI (plus:SI (reg/f:SI 53 virtual-incoming-args)

(const_int 4 [0x4])) [0 b+0 S4 A432])) -1 (mil)
(nil))

(insn 31 30 32 (parallell

(set (mem/f:SI (reg/f:SI 53 virtual-incoming-args)
[0 a+0 S4 A32])
(minus:SI (mem/f:SI (reg/f:SI 53 virtual-incoming-args)
[0 a+0 S4 A32])

(reg:SI 61)))
(clobber (reg:CC 17 flags))
]) -1 (nil)
(expr_list:REG_EQUAL (minus:SI (mem/f:SI (reg/f:SI 53
virtual-incoming-args) [0 a+0 S4 A32])
(mem/f:SI (plus:SI (reg/f:SI 53 virtual-incoming-args)

(const_int 4 [0x4])) [0 b+0 S4 A32]))
(nil)))
(jump_insn 32 31 33 (set (pc)
(label_ref 39)) -1 (nil)
(nil))
(barrier 33 32 34)
(code_label 34 33 35 5 "" "" [0 uses])

A. Demaille, E. Renault, R. Levillain

Intermediate Representations

34 / 107

Register Based: gcc's rtl cont'd

(note 35 34 37 ("gcd.c") 9)
(insn 37 35 38 (set (reg:SI 62)

-1 (nil) (nil))

(mem/f:SI (reg/f:SI 53 virtual-incoming-args) [0 a+0 S4 A32]))
(insn 38 37 39 (parallell

(set (mem/f:SI (plus:SI (reg/f:SI 53 virtual-incoming-args)

(const_int 4 [0x4])) [0 b+0 S4 A32])
(minus:SI (mem/f:SI (plus:SI (reg/f:SI 53

virtual-incoming-args)
(const_int 4 [0x4])) [0 b+0 S4 A32])
(reg:SI 62)))
(clobber (reg:CC 17 flags))
1) -1 (nil)
(expr_list:REG_EQUAL (minus:SI (mem/f:SI (plus:SI (reg/f:SI
63 virtual-incoming-args)
(const_int 4 [0x4])) [0 b+0 S4 A32])
(mem/f:SI (reg/f:SI 53 virtual-incoming-args) [0 a+0 S4 A32]))
(ni1)))
(code_label 39 38 41 6 "" "" [0 uses])
(jump_insn 41 39 42 (set (pc)

(label_ref 10)) -1 (nil)
(nil))

(barrier 42 41 43)
(note 43 42 44 NOTE_INSN_LOOP_END)

A. Demaille, E. Renault: R. Levillain Intermediate Representations

35 / 107

Register Based: gcc's rtl cont'd

(note 45 44
(note 46 45
(note 47 46
(insn 49 47

46
47
49
51

(mem/f

(nil))
(insn 51 49

52

("ged.c") 11)
NOTE_INSN_DELETED)
NOTE_INSN_DELETED)
(set (reg:SI 64)

:SI (reg/f:SI 53 virtual-incoming-args) [0 a+0 S4 A32])) -1 (nil)

(set (reg:SI 58)

(reg:SI 64)) -1 (nil)

(nil))

(jump_insn 52 51 53 (set (pc)
(label_ref 56)) -1 (nil)

(nil))
(barrier 53
(note 54 53
(note 55 54
(insn 59 55

(nil))
(insn 60 59

(nil))
(code_label
(insn 58 56

52
55
59
60

56

56
61

54)

NOTE_INSN_FUNCTION_END)

("ged.c") 12)

(clobber (reg/i:SI 0 eax)) -1 (nil)

(clobber (reg:SI 58)) -1 (nil)

60 58 1 "" "" [0 uses])
(set (reg/i:SI 0 eax)

(reg:SI 58)) -1 (nil)

(nil))

(insn 61 58 0 (use (reg/i:SI 0 eax)) -1 (nil)

A. Demaille, E. Renault, R. Levillain

Intermediate Representations

36 / 107

Register Based [Edwards, 2003]

Advantages

@ Suits today’s architectures
o Clearer data flow

A. Demaille, E. Renault, R. Levillain Intermediate Representations 37 / 107

Register Based [Edwards, 2003]

Advantages

Suits today's architectures
Clearer data flow

Disadvantages

Harder to synthesize
Less compact
Harder to interpret

A. Demaille, E. Renault, R. Levillain Intermediate Representations 37 / 107

Tree

@ Intermediate Representations

@ Tree

A. Demaille, E. Renault, R. Levillain Intermediate Representations 38 / 107

Tree [Appel, 1998]

A simple intermediate language:
@ Tree structure (no kidding...)
@ Unbounded number of registers (temporaries)

@ Two way conditional jump

A. Demaille, E. Renault, R. Levillain Intermediate Representations 39 / 107

Tree: Grammar

(Exp) 1= "const" int

"name" (Label)

"temp" (Temp)

"binop" (Oper) (Exp) (Exp)

"mem" (Exp)

"call" (Exp) [{(Exp)}] "call end"

"eseq" (Stm) (Exp)

(Stm) 1= "move" (Exp) (Exp)
| "sxp" (Exp)
| "jump" (Exp) [{(Label)}]
| "cjump" (Relop) (Exp) (Exp) (Label) (Label)
| "seq" [{(Stm)}] "seq end"
| "label" (Label)

<Oper> = "add" | "sub" | "mal" | "giv" | "mod"
<Relop> = ||eqn | "ne" ‘ LR ‘ "gt" | "M | ngeu

A. Demaille, E. Renault, R. Levillain Intermediate Representations 40 / 107

Tree Samples

% echo ’1 + 2 * 3° | tc -H -
/* == High Level Intermediate representation. == */
Routine: Main Program
label Main
Prologue
Body
SXp
binop add
const 1
binop mul
const 2
const 3
Epilogue
label end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 41 / 107

Tree Samples

% echo ’if 1 then print_int (1)’ | tc -H -
Routine: Main Program
label Main
Prologue
Body
seq
cjump ne, const 1, const O, name 11, name 12
label 11
sxp call name print_int, const 1
jump name 13
label 12
sxp const O
label 13
seq end
Epilogue
label end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 42 / 107

Memory Management

© Memory Management
@ Memory Management
@ Activation Blocks
@ Nonlocal Variables

A. Demaille, E. Renault, R. Levillain Intermediate Representations 43 / 107

Memory Management

© Memory Management
@ Memory Management

A. Demaille, E. Renault, R. Levillain Intermediate Representations 44 / 107

Memory Hierarchy [Appel, 1998]

Different kinds of memory in a computer, with different performances:
Registers Small memory units built on the cpu (bytes, 1 cycle)
L1 Cache Last main memory access results (kB, 2-3 cycles)
L2 Cache (MB, 10 cycles)
Memory The usual ram (GB, 100 cycles)
Storage Disks (100GB, TB, > 1Mcycles)

Use the registers as much as possible.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 45 / 107

Register Overflow

What if there are not enough registers? Use the main memory, but how?

Recursion:
Without Each name is bound once. It can be statically allocated a

single unit of main memory. (Cobol, Concurrent Pascal,

Fortran (unless recursive)).

Intermediate Representations 46 / 107

A. Demaille, E. Renault, R. Levillain

Register Overflow

What if there are not enough registers? Use the main memory, but how?
Recursion:
Without Each name is bound once. It can be statically allocated a
single unit of main memory. (Cobol, Concurrent Pascal,
Fortran (unless recursive)).
With A single name can be part of several concurrent bindings.
Memory allocation must be dynamic.

46 / 107

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Dynamic Memory Allocation

Depending on the persistence, several models:

Global Global objects, whose liveness is equal to that of the program,
are statically allocated
(e.g., static variables in C)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 47 / 107

Dynamic Memory Allocation

Depending on the persistence, several models:

Global Global objects, whose liveness is equal to that of the program,
are statically allocated
(e.g., static variables in C)

Automatic Liveness is bound to that of the host function
(e.g., auto variables in C)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 47 / 107

Dynamic Memory Allocation

Depending on the persistence, several models:

Global Global objects, whose liveness is equal to that of the program,
are statically allocated
(e.g., static variables in C)

Automatic Liveness is bound to that of the host function
(e.g., auto variables in C)

Heap Liveness is independent of function liveness:

A. Demaille, E. Renault, R. Levillain Intermediate Representations 47 / 107

Dynamic Memory Allocation

Depending on the persistence, several models:
Global Global objects, whose liveness is equal to that of the program,
are statically allocated
(e.g., static variables in C)
Automatic Liveness is bound to that of the host function
(e.g., auto variables in C)
Heap Liveness is independent of function liveness:
User Controlled
malloc/free (C), new/dispose (Pascal),
new/delete (C++) etc.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 47 / 107

Dynamic Memory Allocation

Depending on the persistence, several models:

Global Global objects, whose liveness is equal to that of the program,
are statically allocated
(e.g., static variables in C)

Automatic Liveness is bound to that of the host function
(e.g., auto variables in C)
Heap Liveness is independent of function liveness:

User Controlled
malloc/free (C), new/dispose (Pascal),
new/delete (C++) etc.

Garbage Collected
With or without new
(1isp, Smalltalk, ML, Haskell, Tiger, Perl etc.).

A. Demaille, E. Renault, R. Levillain Intermediate Representations 47 / 107

spim Memory Model [Larus, 1990]

Ox7fffffff
Stack Segment
Data Segment
Text Segment
0x400000
Reserved

A. Demaille, E. Renault, R. Levillain Intermediate Representations 48 / 107

Stack Management

Function calls is a last-in first-out process, hence, it is properly represented
by a stack.

Or...

“Call tree”: the complete history of calls.
The execution of the program is its depth first traversal.
Depth-first walk requires a stack.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 49 / 107

Activation Blocks

© Memory Management

@ Activation Blocks

A. Demaille, E. Renault, R. Levillain Intermediate Representations 50 / 107

Activation Blocks

@ In recursive languages, a single routine can be “opened” several times
concurrently.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 51 / 107

Activation Blocks

@ In recursive languages, a single routine can be “opened” several times
concurrently.

@ An activation designates one single instance of execution.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 51 / 107

Activation Blocks

@ In recursive languages, a single routine can be “opened” several times
concurrently.

@ An activation designates one single instance of execution.

@ Automatic variables are bound to the liveness of the activation.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 51 / 107

Activation Blocks

@ In recursive languages, a single routine can be “opened” several times
concurrently.

@ An activation designates one single instance of execution.

Automatic variables are bound to the liveness of the activation.

Their location is naturally called activation block, or stack frame.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 51 / 107

Activation Blocks Contents

Data to store on the stack:
arguments incoming
local variables user automatic variables
return address where to return
saved registers the caller’s environment to restore
temp compiler automatic variables, spills

static link when needed

A. Demaille, E. Renault, R. Levillain Intermediate Representations 52 / 107

Activation Blocks Layout

The layout is suggested by the constructor.
Usually the layout is from earliest known, to latest.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 53 / 107

Activation Blocks L

$tp —> argument 6
argument 5
arguments 1-4 T
. . memory
saved registers addresses

dynamic area

A. Demaille, E. Renault, R. Levillain Intermediate Representations 54 / 107

Frame & Stack Pointers

The stack of activation blocks is implemented as an array with
frame pointer the inner frontier of the activation block

stack pointer the outer frontier

Usually the stack is represented growing towards the bottom.

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 55 / 107

Flexible Automatic Memory

auto Static size, automatic memory.
malloc Dynamic size, persistent memory.

Automatic memory is extremely convenient. ..

int
open2(char* strl, char* str2, int flags, int mode)
{
char name[strlen(strl) + strlen(str2) + 1];
stpcpy (stpcpy (name, strl), str2);
return open(name, flags, mode);

3

A. Demaille, E. Renault, R. Levillain Intermediate Representations 56 / 107

Flexible Automatic Memory

malloc is a poor replacement.

int
open2(char* strl, char* str2, int flags, int mode)
{
char* name
= (char*) malloc(strlen(strl) + strlen(str2) + 1);
if (name == 0)
fatal("virtual memory exceeded")
stpcpy (stpcpy (name, strl), str2);
int fd = open(name, flags, mode);
free(name) ;
return fd;

. Demaille, E. Renault, R. Levillain Intermediate Representations 57 / 107

Flexible Automatic Memory

alloca is a good replacement.

int
open2(char *strl, char *str2, int flags, int mode)
{
char *name
= (char *) alloca(strlen(strl) + strlen(str2) + 1);
stpcpy (stpcpy (name, strl), str2);
return open(name, flags, mode);

}

A. Demaille, E. Renault, R. Levillain Intermediate Representations 58 / 107

Advantages of alloca [Loosemore et al., 2003]

@ Using alloca wastes very little space and is very fast.
(It is open-coded by the GNU C compiler.)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 59 / 107

Advantages of alloca [Loosemore et al., 2003]

@ Using alloca wastes very little space and is very fast.
(It is open-coded by the GNU C compiler.)

@ alloca does not cause memory fragmentation.
Since alloca does not have separate pools for different sizes of block,
space used for any size block can be reused for any other size.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 59 / 107

Advantages of alloca [Loosemore et al., 2003]

@ Using alloca wastes very little space and is very fast.
(It is open-coded by the GNU C compiler.)

@ alloca does not cause memory fragmentation.
Since alloca does not have separate pools for different sizes of block,
space used for any size block can be reused for any other size.

o Automatically freed.
Nonlocal exits done with longjmp automatically free the space
allocated with alloca when they exit through the function that called
alloca. This is the most important reason to use alloca.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 59 / 107

Disadvantages of alloca [Loosemore et al., 2003]

@ If you try to allocate more memory than the machine can provide, you
don't get a clean error message.
Instead you get a fatal signal like the one you would get from an
infinite recursion; probably a segmentation violation.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 60 / 107

Disadvantages of alloca [Loosemore et al., 2003]

@ If you try to allocate more memory than the machine can provide, you
don't get a clean error message.
Instead you get a fatal signal like the one you would get from an
infinite recursion; probably a segmentation violation.

@ Some non-GNU systems fail to support alloca, so it is less portable.

However, a slower emulation of alloca written in C is available for
use on systems with this deficiency.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 60 / 107

Arrays vs. Alloca [Loosemore et al., 2003]

@ A variable size array’s space is freed at the end of the scope of the
name of the array.
The space allocated with alloca remains until the end of the function.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 61 / 107

Arrays vs. Alloca [Loosemore et al., 2003]

@ A variable size array’s space is freed at the end of the scope of the
name of the array.

The space allocated with alloca remains until the end of the function.
@ It is possible to use alloca within a loop, allocating an additional

block on each iteration.

This is impossible with variable-sized arrays.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 61 / 107

Implementing Dynamic Arrays & Alloca

o Playing with $sp which makes $fp mandatory.

@ An additional stack (as with the C emulation of alloca).

A. Demaille, E. Renault, R. Levillain Intermediate Representations 62 / 107

Nonlocal Variables

© Memory Management

@ Nonlocal Variables

A. Demaille, E. Renault, R. Levillain Intermediate Representations 63 / 107

escapes-n-recursion

let function trace(fn: string, val: int) =
(print (fn); print("("); print_int(val); print(") "))

function one(input : int) =
let function two() =
(trace("two", input); one(input - 1))
in
if input > O then
(two(); trace("one", input))
end
in
one(3); print("\n")
end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 64 / 107

escapes-n-recursion

let function trace(fn: string, val: int) =
(print (fn); print("("); print_int(val); print(") "))

function one(input : int) =
let function two() =
(trace("two", input); one(input - 1))
in
if input > O then
(two(); trace("one", input))
end
in
one(3); print("\n")
end

% tc -H escapes-n-recursion.tig > f.hir && havm f.hir

A. Demaille, E. Renault, R. Levillain Intermediate Representations 64 / 107

escapes-n-recursion

let function trace(fn: string, val: int) =
(print (fn); print("("); print_int(val); print(") "))

function one(input : int) =
let function two() =
(trace("two", input); one(input - 1))
in
if input > O then
(two(); trace("one", input))
end
in
one(3); print("\n")
end

% tc -H escapes-n-recursion.tig > f.hir && havm f.hir
two(3) two(2) two(l) one(l) one(2) one(3)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 64 / 107

Deep Static Function Hierarchies

Main
vm
—7—

v v

F1 F2

vl v2
F11 F12 F21 F22
vll vl2 v21 v22
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

Main What if:
vm
—7—

v v

F1 F2

vl v2
F11 F12 F21 F22
vll vl2 v21 v22
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

: What if:
Main
vm © Main uses vm
l

v v

F1 F2

vl v2
F11 F12 F21 F22
vll v12 v21 v22
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

: What if:
Main
vm © Main uses vm
@ Main calls F1
v v
F1 F2
vl v2
F11 F12 F21 F22
vll vl2 v21 v22
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

: What if:
Main
vm © Main uses vm
; } @ Main calls F1
F1 F2 © F1 uses vi
vl v2
F11 F12 F21 F22
vll v12 v21 v22
Fi111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

: What if:
Main
vm © Main uses vm
; } @ Main calls F1
F1 F2 © F1 uses vi
vl v © F1 uses vm, non
local
F11 F12 F21 F22
vll v12 v21 v22
Fi111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

: What if:
Main
vm © Main uses vm
; } @ Main calls F1
F1 F2 © F1 uses vi
vl v © F1 uses vm, non
local
v v v v © F1 calls F11
F11 F12 F21 F22
vll v12 v21 v22
Fi111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

- What if:
Main
. © Main uses vm
; [. Q Main calls F1
F1 1
= = (3] uses v
i v © F1 uses vm, non
local
;. 0 v v ©Q Fl callsF11
F11 F12 F21 F22 Q F11 uses vil
vll v12 v21 v22
F111 F211
vlil va2il

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

- What if:
Main
. © Main uses vm
; [. Q Main calls F1
F1 1
= = (3] uses v
i v Q F1 uses vm, non
local
;. 0 v v ©Q Fl callsF11
F11 F12 F21 F22 Q F11 uses vil
vll v12 v21 v22
@ F11 uses vi
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

e What if:
. © Main uses vm
; . @ Main calls F1
F1 1
= = (3] uses v
i v Q F1 uses vm, non
local
;. 0 v v ©Q Fl callsF11
F11 F12 F21 F22 Q F11 uses vil
vll v12 v21 v22
@ F11 uses vi
Q F11 uses vm
F111 F211
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

Main What if:
vm © Main uses vm
: 1 @ Main calls F1
F1 1
= Fo (3] uses v
vl Vo © F1 uses vm, non
local
v v v v © F1 calls F11
F11 F12 F21 F22 Q Fi1i uses vii
vll v12 v21 v22
@ F11 uses vi
@ F11 uses vm
F111 F211 Q F11 calls F12
vlll v211

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

Main What if:
vm © Main uses vm
: 1 @ Main calls F1
F1 1
= Fo (3] uses v
vl Vo © F1 uses vm, non
local
v v v v © F1 calls F11
F11 F12 F21 F22 Q Fi1i uses vii
vll v12 v21 v22
@ F11 uses vi
@ F11 uses vm
Fi111 F211 Q F11 calls F12
vill v2ll @ F12 calls F1

A. Demaille, E. Renault, R. Levillain Intermediate Representations 65 / 107

Deep Static Function Hierarchies

The caller must provide the callee with its static link.

Caller Callee Static Link
Main F1 prain = fP
F1 F11 fpr; = Ip
F11 F12 fpp; = slpi1 = *fppyy = *Ep
F12 F2 fPyain = S1lp1 = *sSlpyp = **fpg, = **fp
F2 F22 fpg, = fp
F22 Fi1 o = 777

Assuming that the static link is stored at fp.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 66 / 107

Higher Order Functions

let
function addgen (a: int)
let
function res (b: int)
a+hb
in
res
end

var add50 := addgen (50)
in

add50 (1)
end

A. Demaille, E. Renault, R. Levillain

int

int

-> int =

Intermediate Representations

67 / 107

Translation to Intermediate Language

© Translation to Intermediate Language
o Calling Conventions
o Clever Translations
@ Complex Expressions

A. Demaille, E. Renault, R. Levillain Intermediate Representations 68 / 107

Calling Conventions

© Translation to Intermediate Language
o Calling Conventions

A. Demaille, E. Renault, R. Levillain Intermediate Representations 69 / 107

Calling Conventions at hir Level

You must:
@ Preserve some registers (fp, sp)
o Allocate the frame
@ Handle the static link (10)
o Receive the (other) arguments (i1, i2...)
You don’t:
@ Save temporaries (havm has magic for recursion)

@ Jump to the ra (this is not nice feature from havm)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 70 / 107

havm Calling Conventions

let function gecd (a: int, b: int) : int = (...)
in print_int (gcd (42, 51)) end

Routine: gcd # Body
label 10 move temp rv
Prologue eseq
move temp t2, temp fp ...
move temp fp, temp sp temp t0O
move temp sp, temp sp - const 4 # Epilogue
move mem temp fp, temp iO move temp sp, temp fp
move temp t0, temp il move temp fp, temp t2
move temp tl, temp i2 label end
Routine: Main Program
label Main

sxp call name print_int
call name 10 temp fp
const 42 const 51
label end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 71 / 107

Clever Translations

© Translation to Intermediate Language

@ Clever Translations

A. Demaille, E. Renault, R. Levillain Intermediate Representations 72 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

©Q eseq (seq (cjump (o < B, ltrue, 1false),

label ltrue

move temp t, const 1

jump lend

label 1false

move temp t, const 0

label lend),

temp t)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

©Q eseq (seq (cjump (o < B, ltrue, 1false),

label ltrue

move temp t, const 1

jump lend

label 1false

move temp t, const 0

label lend),

temp t)

0 seq (sxp (a)
sxp (8))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations

73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

©Q eseq (seq (cjump (o < B, ltrue, 1false),
label ltrue

wewD Homy 6, eenst 1 It depends on the use:
jump lend

label 1lfalse
move temp t, const 0
label lend),

temp t)

0 seq (sxp (a)
sxp (8))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

©Q eseq (seq (cjump (o < B, ltrue, 1false),
label 1ltrue
move ;ems t, const 1 It depends on the use:
jump len)
label 1false @ if o< then ...
move temp t, const 0
label lend),
temp t)

0 seq (sxp (a)
sxp (8))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

©Q eseq (seq (cjump (o < B, ltrue, 1false),
label ltrue
move temp t, const 1

N | It depends on the use:
jump len _
label 1false @ if o< then ...
move temp t, const O Qa:=a<p
label lend),

temp t)

0 seq (sxp (a)
sxp (8))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 73 / 107

Translating Conditions

What is the right translation for a < 3, with a and 3 two arbitrary
expressions?

Q cjump (@ < [, ltrue, 1lfalse)

Q eseq (seq (cjump (o < [, ltrue, lfalse),
label ltrue
move temp t, const 1

o Teng It depends on the use:
jump len

label 1false @ if o< then ...
move temp t, const 0 o a:=a<p
label lend), Q (a<B, O).

temp t)

0 seq (sxp (a)
sxp (8))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 73 / 107

Context Sensitive Translation

@ The right translation depends upon the use.
This is context sensitivel!

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Context Sensitive Translation

@ The right translation depends upon the use.
This is context sensitivel!

@ How to implement this?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Context Sensitive Translation

@ The right translation depends upon the use.
This is context sensitive!
@ How to implement this?
o When entering an IfExp, warn “l want a condition”,

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Context Sensitive Translation

@ The right translation depends upon the use.
This is context sensitive!
@ How to implement this?

o When entering an IfExp, warn “l want a condition”,
o then, depending whether it is an expression or a statement, warn ‘I
want an expression’” or “l want a statement”.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Context Sensitive Translation

@ The right translation depends upon the use.
This is context sensitive!
@ How to implement this?

o When entering an IfExp, warn “l want a condition”,
o then, depending whether it is an expression or a statement, warn ‘I
want an expression’” or “l want a statement”.

@ Don't forget to preserve the demands of higher levels...

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Context Sensitive Translation

The right translation depends upon the use.
This is context sensitive!

©

How to implement this?
o When entering an IfExp, warn “l want a condition”,
o then, depending whether it is an expression or a statement, warn ‘I
want an expression’” or “l want a statement”.

Don'’t forget to preserve the demands of higher levels...
o Eek.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 74 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,
Cx Condition shell, encapsulating a wannabe condition.
Then, ask them to finish their translation according to the use:
Exp | un_ nx un_ ex un_cx (t, f)
Ex(e)

Cx(a < b)
Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e)

Cx(a < b)
Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e) e

Cx(a < b)
Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b)

Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b) | seq(sxp(a), sxp(b))

Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b), t)

Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a <b, t, f)
Nx(s)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a <b, t, f)
Nx(s) s

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a <b, t, f)
Nx(s) s 77

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

Prototranslation, Expression Shells

Rather, delay the translation until the use is known (translate: :Exp):
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_ nx un_ ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a <b, t, f)
Nx(s) s 77 77

A. Demaille, E. Renault, R. Levillain Intermediate Representations 75 / 107

if 11 < 22 | 22 < 33 then print_int(1) else print_int(0)

cjump ne
eseq seq cjump 11 < 22 name 10 name 11
label 10 move temp tO const 1
jump name 12
label 11 move temp tO
eseq seq move temp tl const 1
cjump 22 < 33 name 13 name 14

label 14
move temp tl const 0
label 13
seq end
temp t1
jump name 12
label 12
seq end
temp tO
const 0
name 15
name 16

label 15 sxp call name print_int const 1
jump name 17

label 16 sxp call name print_int const 0
jump name 17

label 17

A. Demaille, E. Renault, R. Levillain Intermediate Representations 76 / 107

A Better Translation: Ix

seq
cjump 11 < 22 name 13 name 14
label 13
cjump 1 <> 0 name 10 name 11
label 14
cjump 22 < 33 name 10 name 11
seq end
label 10
sxp call name print_int const 1
jump name 12
label 11
sxp call name print_int const O
label 12

A. Demaille, E. Renault, R. Levillain Intermediate Representations 77 / 107

Complex Expressions

© Translation to Intermediate Language

@ Complex Expressions

A. Demaille, E. Renault, R. Levillain Intermediate Representations 78 / 107

Complex Expressions

Array creation
Record creation
String comparison

While loops

For loops

A. Demaille, E. Renault, R. Levillain Intermediate Representations 79 / 107

While Loops

while condition
do body

Demaille, E. Renault, R. Levillain Intermediate Representations 80 / 107

While Loops

test:
if not (condition)
while condition goto done
do body body
goto test
done:

A. Demaille, E. Renault, R. Levillain Intermediate Representations 80 / 107

for i := min to maz
do body

let i := min
limit := maz

in
while i <= limit
do
(body; ++1i)
end

Intermediate Representations 81 / 107

A. Demaille, E. Renault, R. Levillain

let i := min
limit := maz
in
if (i > limit)
goto end
for i := min to maz loop:
do body body
if (4 >= limit)
goto end
++1
goto loop
end:

A. Demaille, E. Renault, R. Levillain Intermediate Representations 82 / 107

Additional Features

@ Bounds checking
@ Nil checking

A. Demaille, E. Renault, R. Levillain Intermediate Representations 83 / 107

The Case of the Tiger Compiler

Q@ The Case of the Tiger Compiler
@ Translation in the Tiger Compiler

A. Demaille, E. Renault, R. Levillain Intermediate Representations 84 / 107

Translation in the Tiger Compiler

Q@ The Case of the Tiger Compiler
@ Translation in the Tiger Compiler

A. Demaille, E. Renault, R. Levillain Intermediate Representations 85 / 107

Actors: The temp Module

temp: :Temp temporaries are pseudo-registers.
Generation of fresh temporaries.

temp: :Label Pseudo addresses, both for data and code.
Generation of fresh labels.

misc: :endo_map<T> Mapping from T to T.
Used during register allocation.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 86 / 107

Actors: The tree Module

Implementation of hir and lir.

/Tree/ /Exp/ Const
Name
Temp
Binop
Mem
Call
Eseq
/Stm/ Move
Sxp
Jump
CJump
Seq
Label

(int)

(temp: :Label)
(temp: : Temp)

(Oper, Exp, Exp)

(Exp)

(Exp, list<Expx>)

(Stm, Exp)

(Exp, Exp)

(Exp)

(Exp, list<temp::Label>)
(Relop, Exp, Exp, Label, Label)
(1ist<Stm *>)

(temp: :Label)

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 87 / 107

Actors: The tree Module: Warnings

@ temp::Temp is not tree: :Temp.
The latter aggregates one of the former.
Similarly with Label.

@ n-ary seq.
(Unlike [Appel, 1998]).
@ Sxp instead of Exp.

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 88 / 107

Actors: The frame Module

Access How to reach a “variable”.
Abstract class with two concrete subclasses.

frame::In_Register
frame::In_Frame

Frame What “variables” a frame contains.
local_alloc(bool escapes_p) -> Access

Frames and (frame::) accesses are not aware of static links.

Intermediate Representations 89 / 107

A. Demaille, E. Renault, R. Levillain

Actors: The translate Module

Access Static link aware version of frame: :Access:
how to reach a variable, including non local: a frame: :Access
and a translate::Level.
exp(Level use) -> Exp Tree expression
The location of this Access, from the use point of view.
Level Static link aware version of frame: :Frame:
what variables a frame contains, and where is its parent level.
fp(Level use) -> Exp Tree expression
The frame pointer of this Level, from the use point of view.
Used for calls, and reaching frame resident temporaries.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 90 / 107

Actors: The translate Module

translate: :Exp

Prototranslation wrappers (Ex, Nx, Cx, Ix).
translate/translation.hh

Auxiliary functions used by the Translator.
translate::Translator

The translator.

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 91 / 107

lir: Low Level Intermediate Representation

© lir: Low Level Intermediate Representation

A. Demaille, E. Renault, R. Levillain Intermediate Representations 92 / 107

Inadequacy of hir

hir constructs not supported in assembly complicate the back end:

@ Structure
No nested sequences.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 93 / 107

Inadequacy of hir

hir constructs not supported in assembly complicate the back end:
@ Structure
No nested sequences.

@ Expressions
Assembly is imperative: there is no “expression”.

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 93 / 107

Inadequacy of hir

hir constructs not supported in assembly complicate the back end:
@ Structure
No nested sequences.
@ Expressions
Assembly is imperative: there is no “expression”.
o Calling Conventions
A (high-level) call is a delicate operation, not a simple instruction.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 93 / 107

Inadequacy of hir

hir constructs not supported in assembly complicate the back end:
@ Structure
No nested sequences.
@ Expressions
Assembly is imperative: there is no “expression”.
o Calling Conventions
A (high-level) call is a delicate operation, not a simple instruction.
@ Two Way Conditional Jumps
Machines provide “jump or continue” instructions.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 93 / 107

Inadequacy of hir

hir constructs not supported in assembly complicate the back end:
@ Structure
No nested sequences.
@ Expressions
Assembly is imperative: there is no “expression”.
o Calling Conventions
A (high-level) call is a delicate operation, not a simple instruction.
@ Two Way Conditional Jumps
Machines provide “jump or continue” instructions.

@ Limited Number of Registers
From temps to actual registers.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 93 / 107

Linearization: Principle

@ eseq and seq must be eliminated (except the outermost seq).

@ Similar to cut-elimination: permute inner eseq and seq to lift them
higher, until they vanish.

@ A simple rewriting system.
eseq (s1, eseq (82, e)) ~ eseq (seq (s1, s2), e)
sxp (eseq (s, e)) ~ seq (s, sxp (e))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 94 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)
call (f, eseq (s, e), es)

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)
call (f, eseq (s, e), es) ~ eseq (s, call (f, e, es))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)
call (f, eseq (s, e), es) ~ eseq (s, call (f, e, es))
binop (+, eseq (s, el), e2)

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)
call (f, eseq (s, e), es) ~ eseq (s, call (f, e, es))
binop (+, eseq (s, el), e2) ~» eseq (s, binop (+, el, e2))

A. Demaille, E. Renault, R. Levillain

Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)

call (f, eseq (s, e), es) ~ eseq (s, call (f, e, es))
binop (+, eseq (s, el), e2) ~» eseq (s, binop (+, el, e2))
binop (+, el, eseq (s, e2))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: More Rules

seq (ssl, seq (ss2), ss3) ~ seq (ssl, ss2, ss3)

call (f, eseq (s, e), es) ~ eseq (s, call (f, e, es))
binop (+, eseq (s, el), e2) ~» eseq (s, binop (+, el, e2))
binop (+, el, eseq (s, e2)) ~ eseq (s, binop (+, el, e2))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 95 / 107

Linearization: Incorrect Changes

binop (+, el, eseq (s, e2)) ~ eseq (s, binop (+, el, e2))

@ But what if s modifies the value of e1?
binop (+, temp t,
eseq (move (temp t, const 42),
const 0))
~» eseq (move (temp t, const 42),
binop (+, temp t, const 0))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 96 / 107

Linearization: Incorrect Changes

binop (+, el, eseq (s, e2)) ~ eseq (s, binop (+, el, e2))

@ But what if s modifies the value of e1?
binop (+, temp t,
eseq (move (temp t, const 42),
const 0))
~» eseq (move (temp t, const 42),
binop (+, temp t, const 0))

@ This transformation is invalid: it changes the semantics.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 96 / 107

Linearization: Incorrect Changes

binop (+, el, eseq (s, e2)) ~ eseq (s, binop (+, el, e2))

@ But what if s modifies the value of e1?
binop (+, temp t,
eseq (move (temp t, const 42),
const 0))
~» eseq (move (temp t, const 42),
binop (+, temp t, const 0))

@ This transformation is invalid: it changes the semantics.

@ How can it be solved?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 96 / 107

Linearization: Incorrect Changes

binop (+,
temp t,
eseq (move (temp t, const 42),
const 0))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 97 / 107

Linearization: Incorrect Changes

binop (+,
temp t,
eseq (move (temp t, const 42),
const 0))

eseq (move (temp t,
const 42),
binop (+,
temp t,
const 0))

A. Demaille, E. Renault, R. Levillain Intermediate Representations 97 / 107

Linearization: Incorrect Changes

binop (+,
temp t,
eseq (move (temp t, const 42),
const 0))

eseq (move (temp t, eseq (seq (move (temp tO, temp t)
const 42), move (temp t, const 42)),
binop (+, binop (+,
temp t, temp tO,
const 0)) const 0))

A. Demaille, E. Renault, R. Levillain Intermediate Representations

Linearization: More Temporaries

@ When “de-expressioning” fresh temporaries are needed
binop (+, el, eseq (s, e2))
~> eseq (seq (move (temp t, el), s),
binop (+, temp t, e2))
o More generally
call (f, esl, eseq (s, e), es2)
~» eseq (seq (move (temp t1, el),
move (temp t2, e2),
move (temp t3, e3),
s),
call (f, ts, e, es2))

o This is extremely inefficient when not needed. ..

A. Demaille, E. Renault, R. Levillain Intermediate Representations 98 / 107

Linearization: Commutativity

@ Save useless extra temporaries and moves.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 99 / 107

Linearization: Commutativity

@ Save useless extra temporaries and moves.

@ Problem: commutativity cannot be known statically.
E.g., move (mem (t1), e) and mem (t2)
commute iff t1 # t2.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 99 / 107

Linearization: Commutativity

@ Save useless extra temporaries and moves.

@ Problem: commutativity cannot be known statically.
E.g., move (mem (t1), e) and mem (t2)
commute iff t1 # t2.

@ We need a conservative approximation,

i.e., never say ‘commute” when they don't.
E.g., “if e is a const then s and e definitely commute”.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 99 / 107

Call Normalization

Normalization of a call depends on the kind of the routine:
procedure then its parent must be an sxp
function then its parent must be a move (temp t, .)

This normalization is performed simultaneously with linearization.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 100 / 107

Obviously, to enable the translation of a cjump into actual assembly
instructions, the “false” label must follow the ¢jump.
How?

A. Demaille, E. Renault, R. Levillain Intermediate Representations 101 / 107

Two Way Jumps: Basic Blocks

Split the long outer seq into “basic blocks™:
@ a single entry: the first instruction

@ a single (maybe multi-) exit: the last instruction

It may require
@ a new label as first instruction, to which the prologue jumps
@ new labels after jumps or cjumps

@ a new jump from the last instruction to the epilogue.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 102 / 107

Two Way Jumps: Traces

Start from the initial block, and “sew” each remaining basic block to this
growing “trace”.
@ If the last instruction is a jump
o if the “destination block” is available, add it
o otherwise, fetch any other remaining block.
@ If the last instruction is a cjump

o If the false destination is available, push it

o If the true destination is available, flip the cjump and push it,

e otherwise, change the cjump to go to a fresh label, attach this label,
and finally jump to the initial false destination.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 103 / 107

Two Way Jumps: Optimizing Traces

Many jumps should be removable, but sometimes there are choices to
make.

label prologue
Prologue.
jump name test

label test
cjump i <= N, body, done

label body
Body.
jump name test

label done
Epilogue
jump name end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 104 / 107

Two Way Jumps: Optimizing Traces

A. Demaille, E. Renault, R. Levillain Intermediate Representations 105 / 107

Two Way Jumps: Optimizing Traces

label prologue
Prologue
jump name test

label test
cjump i > N,
done, body

label body
Body
jump name test

label done
Epilogue
jump name end

A. Demaille, E. Renault, R. Levillain Intermediate Representations 105 / 107

Two Way Jumps: Optimizing Traces

label prologue
Prologue
jump name test

label prologue
Prologue
jump name test

jump name test

label test label test

cjump i > N, cjump i <= N,
done, body body, done

label body label done
Body Epilogue

jump name end

label done
Epilogue
jump name end

label body
Body
jump name test

A. Demaille, E. Renault, R. Levillain

Intermediate Representations

105 / 107

Two Way Jumps: Optimizing Traces

label prologue
Prologue
jump name test

label prologue
Prologue
jump name test

label prologue
Prologue
jump name test

jump name end

jump name test

label test label test label body
cjump i > N, cjump i <= N, Body
done, body body, done jump name test
label body label done label test
Body Epilogue cjump 1 <= N,
jump name test jump name end body, done
label done label body label domne
Epilogue Body Epilogue

jump name end

A. Demaille, E. Renault, R. Levillain

Intermediate Representations

105 / 107

Bibliography |

(4 Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

[4 Edwards, S. (2003).
COMS W4115 Programming Languages and Translators.
http://www.cs.columbia.edu/ sedwards/classes/2003/w4115/.

[d Larus, J. R. (1990).
SPIM S20: A MIPS R2000 simulator.
Technical Report TR966, Computer Sciences Department, University
of Wisconsin—Madison.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 106 / 107

http://www.cs.columbia.edu/~sedwards/classes/2003/w4115/

Bibliography I

[Loosemore, S., Stallman, R. M., McGrath, R., Oram, A., and Drepper,
U. (2003).
The GNU C Library Reference Manual.
Free Software Foundation, 59 Temple Place — Suite 330, Boston, MA
02111-1307 USA, 0.10 edition.

[4 Muchnick, S. (1997).
Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers.

A. Demaille, E. Renault, R. Levillain Intermediate Representations 107 / 107

Instruction Selection

Akim Demaille Etienne Renault Roland Levillain
first.last@lrde.epita.fr

EPITA — Ecole Pour I'Informatique et les Techniques Avancées

April 23, 2018

Instruction Selection

© Microprocessors

O A Typical risc: mips

© The EPITA Tiger Compiler
Q@ Instruction Selection

© Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection

Microprocessors

© Microprocessors

A. Demaille, E. Renault, R. Levillain Instruction Selection

Instruction set architecture is the structure of a computer that a machine
language programmer (or a compiler) must understand to write a correct
(timing independent) program for that machine

IBM introducing 360 (1964)

The Instruction Set Architecture (ISA) is the part of the processor that is
visible to the programmer or compiler writer.

A. Demaille, E. Renault, R. Levillain Instruction Selection 4 /89

What is an instruction set?

An instruction set specifies a processor functionality:
@ what operations are supported
@ what storage mechanisms are used
@ how to access storage

@ how to communicate program to processor

A. Demaille, E. Renault, R. Levillain Instruction Selection

Technical aspect of instruction set

[2]

format: length, encoding

©

operations: data type (floating or fixed point) , number and kind of
operands

© storage:

e internal: accumulator, stack, register
e memory: address size, addressing modes

@ control: branch condition, support for procedures, predication

A. Demaille, E. Renault, R. Levillain Instruction Selection

What makes a good instruction set?

An instruction set specifies a processor functionnality:
o implementability: support for a (high performances) range of
implementation
o programmability: easy to express program (by Humans before 80's,
mostly by compiler nowadays)

o backward/forward compatibility: implementability &
programmability across generation

A. Demaille, E. Renault, R. Levillain Instruction Selection

cisc — Complex Instruction Set Chip

large number of instructions (100-250)
6, 8, 16 registers, some for pointers, others for integer computation
arithmetic in memory can be processed

two address code

many possible effects (e.g., self-incrementation)

A. Demaille, E. Renault, R. Levillain Instruction Selection

cisc — Pros & Cons

Pros:

o Simplified compiler: translation from IR is straightforward

@ Smaller assembly code than risc assembly code

o Fewer instructions will be fetched

@ Special purpose register available: stack pointer, interrupt handling ...
Cons:

@ Variable length instruction format

@ Many instruction require many clock for execution

@ Limiter number of general purpose register

o (often) new version of cisc include the subset of instructions of the
previous version

A. Demaille, E. Renault, R. Levillain Instruction Selection

Motivations for something else!

Though the CISC programs could be small in length, but number of bits of
memory occupies may not be less

The complex instructions do not simplify the compilers: many clock cycles
can be wasted to find the appropriate instruction.

risc architectures were designed with the goal of executing one instruction
per clock cycle.

A. Demaille, E. Renault, R. Levillain Instruction Selection

risc — Reduced Instruction Set Chip

@ 32 generic purpose registers

@ arithmetic only available on registers

@ 3 address code

@ load and store relative to a register
(M[r + const])

@ only one effect or result per instruction

A. Demaille, E. Renault, R. Levillain Instruction Selection

risc — Pipeline 1/3

Pipelining is the overlapping the execution of several instructions in a
pipeline fashion.

A pipeline is (typically) decomposed into five stages:
@ Instruction Fetch (IF)
Q@ Instruction Decode (ID)
© Execute (EX)
© Memory Access (MA)
© Write Back (WB)

A. Demaille, E. Renault, R. Levillain Instruction Selection

risc — Pipeline 2/3

instl: IF ID EX MA WB

inst2: IF ID EX MA WB

inst3: IF ID EX MA WB

inst4: IF ID EX MA WB
instb: IF ID EX MA WB

The slowest stage determines the speed of the whole pipeline!

Ex introduces latency

o Register-Register Operation: 1 cycle
@ Memory Reference: 2 cycles

@ Multi-cycle Instructions (floating point): many cycles

A. Demaille, E. Renault, R. Levillain

Instruction Selection

risc — Pipeline 3/3

Data hazard: When an instruction depends on the results of a previous
instruction still in the pipeline.

@ instl write in $s1 during WB
o instl read in $s1 during ID

instl: IF ID EX MA WB

inst2: IF ID EX MA WB
inst2 must be split, causing delays...)
other dependencies can appears J

A. Demaille, E. Renault, R. Levillain Instruction Selection

risc — Pros & Cons

Pros:
o Fixed length instructions: decoding is easier
@ Simpler hardware: higher clock rate
o Efficient Instruction pipeline
o Large number of general purpose register
@ Overlapped register windows to speed up procedure call and return
@ One instruction per cycle
Cons:
@ Minimal number of addressing modes: only Load and Store

o Relatively few instructions

A. Demaille, E. Renault, R. Levillain Instruction Selection

o the classification pure-risc or pure-cisc is becoming more and more
inappropriate and may be irrelevant

@ modern processors use a calculated combination elements of both
design styles

@ decisive factor is based on a tradeoff between the required
improvement in performance and the expected added cost

@ Some processors that are classified as CISC while employing a number
of RISC features, such as pipelining

ARM provides the advantage of using a CISC (in terms of functionality)
and the advantage of an RISC (in terms of reduced code lengths). J

A. Demaille, E. Renault, R. Levillain Instruction Selection

Lessons to be learned

Implementability

Driven by technology: microcode, VLSI, FPGA, pipelining, superscalar,
SIMD, SSE

Programmability

Driven by compiler technology

@ Many non technical issues influence ISA's

@ Best solutions don't always win (Intel X86)

A. Demaille, E. Renault, R. Levillain Instruction Selection

Intel X86 (1A32)

@ Introduced in 1978

@ 8 x 32 bits "general" register

@ variable length instructions (1-15 byte)

@ long life to the king! 15 generations from Intel 8086 to Intel Kabylake

Decoder translates cisc into risc micro-operations l

A. Demaille, E. Renault, R. Levillain Instruction Selection

A Typical risc: mips

© A Typical risc: mips
@ Integer Arithmetics
@ Logical Operations
@ Control Flow
@ Loads and Stores
@ Floating Point Operations

A. Demaille, E. Renault, R. Levillain Instruction Selection

mips Registers and Use Convention [Larus, 1990]

Name | Number | Usage

Zero 0 | Constant 0

at 1 | Reserved for assembler

v0-v1 2-3 | Expression evaluation and results of a function
a0-a3 4-7 | Function argument 1-4

t0-t7 8-15 | Temporary (not preserved across call)
s0-s7 16-23 | Saved temporary (preserved across call)
t8-t9 24-25 | Temporary (not preserved across call)
k0—k1 2627 | Reserved for OS kernel

gp 28 | Pointer to global area

sp 29 | Stack pointer

fp 30 | Frame pointer

ra 31 | Return address (used by function call)

A. Demaille, E. Renault, R. Levillain Instruction Selection

Typical risc Instructions

The following slides are based on [Larus, 1990].

@ The assembler translates pseudo-instructions
(marked with } below).
@ In all instructions below, Src2 can be
o a register
o an immediate value (a 16 bit integer).
@ The immediate forms are included for reference.

@ The assembler translates the general form (e.g., add) into the
immediate form (e.g., addi) if the second argument is constant.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Integer Arithmetics

© A Typical risc: mips
@ Integer Arithmetics

A. Demaille, E. Renault, R. Levillain Instruction Selection

Arithmetic: Addition/Subtraction

add Rdest, Rsrcl, Src2 Addition (with overflow)

addi Rdest, Rsrcl, Imm Addition Immediate (with overflow)

addu Rdest, Rsrcl, Src2 Addition (without overflow)

addiu Rdest, Rsrcl, Imm Addition Immediate (without overflow)
Put the sum of the integers from Rsrcl and Src2 (or Imm) into Rdest.

sub Rdest, Rsrcl, Src2 Subtract (with overflow)

subu Rdest, Rsrcl, Src2 Subtract (without overflow)

Put the difference of the integers from Rsrcl and Src2 into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Arithmetic: Division

If an operand is negative, the remainder is unspecified by the mips architecture
and depends on the conventions of the machine on which spim is run.
div Rsrcl, Rsrc2 Divide (signed)
divu Rsrcl, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. Leave the quotient in register 1o and the
remainder in register hi.

div Rdest, Rsrcl, Src2 Divide (signed, with overflow)

divu Rdest, Rsrcl, Src2 Divide (unsigned, without overflow) t
Put the quotient of the integers from Rsrcl and Src2 into Rdest.

rem Rdest, Rsrcl, Src2 Remainder t

remu Rdest, Rsrcl, Src2 Unsigned Remainder t

Likewise for the the remainder of the division.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Arithmetic: Multiplication

mul Rdest, Rsrcl, Src2 Multiply (without overflow)
mulo Rdest, Rsrcl, Src2 Multiply (with overflow) T
mulou Rdest, Rsrcl, Src2 Unsigned Multiply (with overflow) t

Put the product of the integers from Rsrcl and Src2 into Rdest.

mult Rsrcl, Rsrc2 Multiply

multu Rsrcl, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the
product in register 1o and the high-word in register hi.

A. Demaille, E. Renault, R. Levillain

Instruction Selection

Arithmetic Instructions

abs Rdest, Rsrc Absolute Value T
Put the absolute value of the integer from Rsrc in Rdest.

neg Rdest, Rsrc Negate Value (with overflow) T

negu Rdest, Rsrc Negate Value (without overflow) T

Put the negative of the integer from Rsrc into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Logical Operations

© A Typical risc: mips

@ Logical Operations

A. Demaille, E. Renault, R. Levillain Instruction Selection

Logical Instructions

and Rdest, Rsrcl, Src2 AND
andi Rdest, Rsrcl, Imm AND Immediate
Put the logical AND of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

not Rdest, Rsrc NOT t
Put the bitwise logical negation of the integer from Rsrc into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Logical Instructions

nor Rdest, Rsrcl, Src2 NOR
Put the logical NOR of the integers from Rsrcl and Src2 into Rdest.

or Rdest, Rsrcl, Src2 OR

ori Rdest, Rsrcl, Imm OR Immediate

Put the logical OR of the integers from Rsrcl and Src2 (or Imm) into Rdest.

xor Rdest, Rsrcl, Src2 XOR
xori Rdest, Rsrcl, Imm XOR Immediate
Put the logical XOR of the integers from Rsrcl and Src2 (or Imm) into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Logical Instructions

rol Rdest, Rsrcl, Src2 Rotate Left |

ror Rdest, Rsrcl, Src2 Rotate Right
Rotate the contents of Rsrcl left (right) by the distance indicated by Src2 and
put the result in Rdest.

sll Rdest, Rsrcil, Src2 Shift Left Logical
sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
srav Rdest, Rsrcl, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrcl, Src2 Shift Right Logical
srlv Rdest, Rsrcl, Rsrc2 Shift Right Logical Variable

Shift the contents of Rsrc1l left (right) by the distance indicated by Src2
(Rsrc2) and put the result in Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Control Flow

© A Typical risc: mips

@ Control Flow

A. Demaille, E. Renault, R. Levillain Instruction Selection

Comparison Instructions

seq Rdest, Rsrcl, Src2 Set Equal f
Set Rdest to 1 if Rsrcl equals Src2, otherwise to 0.

sne Rdest, Rsrcl, Src2 Set Not Equal t
Set Rdest to 1 if Rsrcl is not equal to Src2, otherwise to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Comparison Instructions

sge Rdest, Rsrcl, Src2 Set Greater Than Equal t

sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned f
Set Rdest to 1 if Rsrcl > Src2, otherwise to 0.

sgt Rdest, Rsrcl, Src2 Set Greater Than 1

sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsigned
Set Rdest to 1 if Rsrcl > Src2, otherwise to 0.

sle Rdest, Rsrcl, Src2 Set Less Than Equal t

sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned
Set Rdest to 1 if Rsrcl < Src2, otherwise to 0.

slt Rdest, Rsrcl, Src2 Set Less Than

slti Rdest, Rsrcl, Imm Set Less Than Immediate

sltu Rdest, Rsrcl, Src2 Set Less Than Unsigned

sltiu Rdest, Rsrcl, Imm Set Less Than Unsigned Immediate

Set Rdest to 1 if Rsrcl < Src2 (or Imm), otherwise to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Branch and Jump Instructions

Branch instructions use a signed 16-bit offset field: jump from —215 to 4215 — 1)
instructions (not bytes). The jump instruction contains a 26 bit address field.

b label Branch instruction
Unconditionally branch to /abel.

j label Jump
Unconditionally jump to label.

jal label Jump and Link

jalr Rsrc Jump and Link Register

Unconditionally jump to /abel or whose address is in Rsrc. Save the address of
the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Branch and Jump Instructions

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to /abel if coprocessor z's condition flag is true (false).

A. Demaille, E. Renault, R. Levillain Instruction Selection

Branch and Jump Instructions

Conditionally branch to /abel if the contents of Rsrcl * Src2.

beq Rsrcl, Src2, label Branch on Equal
bne Rsrcl, Src2, label Branch on Not Equal
beqz Rsrc, label Branch on Equal Zero
bnez Rsrc, label Branch on Not Equal Zero T

A. Demaille, E. Renault, R. Levillain Instruction Selection

Branch and Jump Instructions

Conditionally branch to /abel if the contents of Rsrcl * Src2.

bge Rsrcl, Src2, label Branch on Greater Than Equal T
bgeu Rsrcl, Src2, label Branch on GTE Unsigned T
bgez Rsrc, label Branch on Greater Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link

Conditionally branch to /abel if the contents of Rsrc are greater than or equal to
0. Save the address of the next instruction in register 31.

bgt Rsrcl, Src2, label Branch on Greater Than 1
bgtu Rsrcl, Src2, label Branch on Greater Than Unsigned |
bgtz Rsrc, label Branch on Greater Than Zero

A. Demaille, E. Renault, R. Levillain Instruction Selection

Branch and Jump Instructions

Conditionally branch to /abel if the contents of Rsrcil are * to Src2.

ble Rsrcl, Src2, label Branch on Less Than Equal f
bleu Rsrcl, Src2, label Branch on LTE Unsigned T
blez Rsrc, label Branch on Less Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link

Conditionally branch to /abel if the contents of Rsrc are greater or equal to 0 or
less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrcl, Src2, label Branch on Less Than 1
bltu Rsrcl, Src2, label Branch on Less Than Unsigned
bltz Rsrc, label Branch on Less Than Zero

A. Demaille, E. Renault, R. Levillain Instruction Selection

Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by spim.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Loads and Stores

© A Typical risc: mips

@ Loads and Stores

A. Demaille, E. Renault, R. Levillain Instruction Selection

Constant-Manipulating Instructions

1i Rdest, imm Load Immediate t
Move the immediate imm into Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of Rdest.
The lower bits of the register are set to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Load: Byte & Halfword

1b Rdest, address Load Byte

lbu Rdest, address Load Unsigned Byte
Load the byte at address into Rdest. The byte is sign-extended by the 1b, but
not the 1bu, instruction.

1h Rdest, address Load Halfword

lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword
is sign-extended by the 1h, but not the lhu, instruction

A. Demaille, E. Renault, R. Levillain Instruction Selection

Load: Word

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into Rdest of coprocessor z (0-3).

1wl Rdest, address Load Word Left

lwr Rdest, address Load Word Right

Load the left (right) bytes from the word at the possibly-unaligned address into
Rdest.

ulh Rdest, address Unaligned Load Halfword

ulhu Rdest, address Unaligned Load Halfword Unsigned
Load the 16-bit quantity (halfword) at the possibly-unaligned address into Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word f
Load the 32-bit quantity (word) at the possibly-unaligned address into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Load Instructions

la Rdest, address Load Address f
Load computed address, not the contents of the location, into Rdest.

1d Rdest, address Load Double-Word T
Load the 64-bit quantity at address into Rdest and Rdest + 1.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Store: Byte & Halfword

sb Rsrc, address Store Byte
Store the low byte from Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from Rsrc at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection

sw Rsrc, address Store Word
Store the word from Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left

swr Rsrc, address Store Word Right

Store the left (right) bytes from Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword f
Store the low halfword from Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word T
Store the word from Rsrc at the possibly-unaligned address.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Store: Double Word

sd Rsrc, address Store Double-Word T
Store the 64-bit quantity in Rsrc and Rsrc + 1 at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Data Movement Instructions

move Rdest, Rsrc Move 1
Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and
lo (e.g., mul Rdest, Rsrcl, Src2).

mfhi Rdest Move From hi

mflo Rdest Move From lo
Move the contents of the hi (1o) register to Rdest.

mthi Rdest Move To hi

mtlo Rdest Move To lo

Move the contents Rdest to the hi (1o) register.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Data Movement Instructions

Coprocessors have their own register sets. These instructions move values
between these registers and the CPU's registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z's register CPsrc to CPU Rdest.

mfcl.d Rdest, FRsrcl Move Double From Coprocessor 1t
Move the contents of floating point registers FRsrc1 and FRsrcl + 1 to CPU
registers Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU Rsrc to coprocessor z's register CPdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Floating Point Operations

© A Typical risc: mips

@ Floating Point Operations

A. Demaille, E. Renault, R. Levillain Instruction Selection

mips Floating Point Instructions

o Floating point coprocessor 1 operates on single (32-bit) and double
precision (64-bit) FP numbers.

@ 32 32-bit registers $£0-$£31.

@ Two FP registers to hold doubles.

@ FP operations only use even-numbered registers
including instructions that operate on single floats.

o Values are moved one word (32-bits) at a time by lwcl, swcl, mtel,
and mfcl or by the 1.s,1.d, s.s, and s.d pseudo-instructions.

@ The flag set by FP comparison operations is read by the CPU with its
bclt and belf instructions.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Floating Point: Arithmetics

Compute the * of the floating float doubles (singles) in FRsrc1 and FRsrc2 and
put it in FRdest.

add.d FRdest, FRsrcl, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrcl, FRsrc2 Floating Point Addition Single
div.d FRdest, FRsrcl, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrcl, FRsrc2 Floating Point Divide Single
mul .d FRdest, FRsrcl, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrcl, FRsrc2 Floating Point Multiply Single
sub.d FRdest, FRsrcl, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrcl, FRsrc2 Floating Point Subtract Single
abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

A. Demaille, E. Renault, R. Levillain Instruction Selection

Floating Point: Comparison

Compare the floating point double in FRsrcl against the one in FRsrc2 and set
the floating point condition flag true if they are x.

c.eq.d FRsrcl, FRsrc2 Compare Equal Double
c.eq.s FRsrcl, FRsrc2 Compare Equal Single
c.le.d FRsrcl, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrcl, FRsrc2 Compare Less Than Equal Single
c.lt.d FRsrcl, FRsrc2 Compare Less Than Double
c.lt.s FRsrcl, FRsrc2 Compare Less Than Single

A. Demaille, E. Renault, R. Levillain Instruction Selection

Floating Point: Conversions

Convert between (i) single, (ii) double precision floating point number or (iii)
integer in FRsrc to FRdest.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer

A. Demaille, E. Renault, R. Levillain Instruction Selection

Floating Point: Moves

1.d FRdest, address Load Floating Point Double f

1.s FRdest, address Load Floating Point Single f
Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double

mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from FRsrc to FRdest.

s.d FRdest, address Store Floating Point Double f

s.s FRdest, address Store Floating Point Single T

Store the floating float double (single) in FRdest at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Compiler

© The EPITA Tiger Compiler

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:

@ mips is a nice assembly language

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:
@ mips is a nice assembly language

@ mips is more modern

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:

@ mips is a nice assembly language
@ mips is more modern
@ mips is meaningful:

A. Demaille, E. Renault, R. Levillain

Instruction Selection

The EPITA Tiger Project

We aim at mips because:

@ mips is a nice assembly language
@ mips is more modern
@ mips is meaningful:

o Million Instructions Per Second (10 mips, 1 mip)

A. Demaille, E. Renault, R. Levillain

Instruction Selection

The EPITA Tiger Project

We aim at mips because:
@ mips is a nice assembly language
@ mips is more modern
@ mips is meaningful:

o Million Instructions Per Second (10 mips, 1 mip)
e Meaningless Indication of Processor Speed

A. Demaille, E. Renault, R. Levillain

Instruction Selection

The EPITA Tiger Project

We aim at mips because:

@ mips is a nice assembly language
@ mips is more modern
@ mips is meaningful:

o Million Instructions Per Second (10 mips, 1 mip)
e Meaningless Indication of Processor Speed
o Meaningless Information Provided by Salesmen

A. Demaille, E. Renault, R. Levillain

Instruction Selection

The EPITA Tiger Project

We aim at mips because:
@ mips is a nice assembly language

@ mips is more modern
@ mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:
@ mips is a nice assembly language

@ mips is more modern
@ mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:
@ mips is a nice assembly language

@ mips is more modern
@ mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

@ spim is a portable mips emulator

A. Demaille, E. Renault, R. Levillain Instruction Selection

The EPITA Tiger Project

We aim at mips because:

@ mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection

A. Demaille

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

Data and
Stack
Segments

SPIM
Messages

0000 Cause = 0000000 Badvaddr = 00000000

0000 = 0000000

=
Qi
B3
Hooa@rracT
8038 S 0m

SSoo 56555500

Smgle Floating Point Register

Cauie) Coaa) () Cster) (Cetear) et varud
Corint) (orearpt) (Chetp) (cerminad) (Cmode)

Text Segments

[0x00400000] 0x8£fa40000 1w R4, 0(R29) [
[0x00400004]) 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 s11 R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori RO, RO, 10 []
[0x0040001c] 0x0000000c syscall

Data Segments
[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6£69 0x636£2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642£7473 0x20617461 0x63746566 0x00205d68
[0x10010060 0x555b2020 0x696c6l6e 0x64656e67 0x64646120
[0x10010070 0x73736572 0x206e6920 0x726£7473 0x00205d65
SPIM Version 3.2 of January 14, 1990

E. Renault, R. Le:

A Sample: fact

/* Define a recursive function. */
let
/* Calculate n! */
function fact (n : int) : int =
ifn=20
then 1
else n * fact (n - 1)
in
print_int (fact (10));
print ("\n")
end

A. Demaille, E. Renault, R. Levillain Instruction Selection

Routine: fact .data

10: sW $fp, -8 ($sp) 14:
move $fp, $s
sub $s§, $s§, 16 .Wor(fl.l
sw $ra, -12 ($£p) .asciiz "\n"
sw $a0, ($fp) .text
sw $al, -4 ($£fp) # Routine: Main
15: 1w $t0, -4 ($£fp) t_main: sw $fp, ($sp)
beq $t0, 0, 11 move $fp, $Sp
12: 1w $a0, ($fp) sub $sp, $sp, 8
1w $t0, -4 ($fp)
sub $at, $t0, 1 3 $ra, -4 ($1p)
jal 10 17: move $a0, $fp
1w $t0, -4 ($£fp) 1i $a1, 10
mul $t0, $t0, $vO jal 10
133 move $v0, $t0 move $a0, $vO
J . 16 jal print_int
e ?1 f;o’ ! 1a $a0, 14
16: 1w $ra, -12 ($£p) jal print
move $sp, $£fp 18: 1w $ra, -4 ($£fp)
1w $fp, -8 ($£fp) move $sp, $fp
ir v 1w $fp, ($fp)
jr $ra

A. Demaille, E. Renault, R. Levillain Instruction Selection

Nolimips (formerly Mipsy)

@ Another mips emulator
@ Interactive loop

@ Unlimited number of $x42 registers!

A. Demaille, E. Renault, R. Levillain Instruction Selection

Routine: fact i
outine: fac # Routine: fact

10: sw $a0, ($fp)
sw $al, -4 ($£p) 10: sSwW $fp, -8 ($sp)
move $x11, $s0
move $x12, $s1 move $fp, $Sp
move $x13, $s2
move $x14, $s3 ek $SP, $SP, 1o
move $x15, $s4 sw $ra, -12 ($fp)
move $x16, $s5
move $x17, $s6 SK $a0’ ($fp)
move $x18, $s7 SW $8.1, -4 ($fp)
15: 1 $x5, -4 ($fp) .
G o 15: 1w $t0, -4 ($£p)
12: 1w $x6, ($£p) beq $t0, 0, 11
$a0, $x6
Yo $xe, -4 ($tp) 12: 1w $a0, ($fp)
sub $x7, $x8, 1 1w $t0, -4 ($fp)
move $al, $x7
jal 10 sub $al, $t0, 1
move $x3, $vO .
1w $x10, -4 ($£fp) Jal 10
mul $x9, $x10, $x3 1w $t0, -4 ($fp)
move $x0, $x9
133 move $v0, $x0 mul $t0’ $t0’ $VO
3 16 13: move $v0, $t0
11: 1i $x0, 1 3
3 13 J 16
16: move $s0, $x11 11: 1i $t0’ 1
move $s1, $x12 3
move $s2, $x13 J 13
move $s3, $x14 - -
move $s4, $x15 16: 1w $ra, 12 ($fp)
move $s5, $x16 move $Sp, $fp
$s6, $x17
ZZX: $Z7, $§1s Lw $fp, -8 ($fp)

jr $ra

Instruction Selection

Q@ Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection

Nolimips (formerly Mipsy)

@ Another mips emulator
@ Interactive loop

@ Unlimited number of $x42 registers!

A. Demaille, E. Renault, R. Levillain Instruction Selection

Routine: fact i
outine: fac # Routine: fact

10: sw $a0, ($fp)
sw $al, -4 ($£p) 10: sSwW $fp, -8 ($sp)
move $x11, $s0
move $x12, $s1 move $fp, $Sp
move $x13, $s2
move $x14, $s3 ek $SP, $SP, 1o
move $x15, $s4 sw $ra, -12 ($fp)
move $x16, $s5
move $x17, $s6 SK $a0’ ($fp)
move $x18, $s7 SW $8.1, -4 ($fp)
15: 1 $x5, -4 ($fp) .
G o 15: 1w $t0, -4 ($£p)
12: 1w $x6, ($£p) beq $t0, 0, 11
$a0, $x6
Yo $xe, -4 ($tp) 12: 1w $a0, ($fp)
sub $x7, $x8, 1 1w $t0, -4 ($fp)
move $al, $x7
jal 10 sub $al, $t0, 1
move $x3, $vO .
1w $x10, -4 ($£fp) Jal 10
mul $x9, $x10, $x3 1w $t0, -4 ($fp)
move $x0, $x9
133 move $v0, $x0 mul $t0’ $t0’ $VO
3 16 13: move $v0, $t0
11: 1i $x0, 1 3
3 13 J 16
16: move $s0, $x11 11: 1i $t0’ 1
move $s1, $x12 3
move $s2, $x13 J 13
move $s3, $x14 - -
move $s4, $x15 16: 1w $ra, 12 ($fp)
move $s5, $x16 move $Sp, $fp
$s6, $x17
ZZX: $Z7, $§1s Lw $fp, -8 ($fp)

jr $ra

Instruction Selection

© Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

How would you translate

ali] := x
where x is frame resident, and
i is not? [Appel, 1998]

A. Demaille, E. Renault, R. Levillain Instruction Selection

Simple Instruction: Translation 1

ti t18 @
dd 20 <- t17
ioad 221 2_ ltl[++ x] @ 0
store M[t20 + 0] <- t21
© @ &>
Coom 85

load t17 <- M[fp + a]

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tree Patterns

@ Translation from Tree to Assembly corresponds to parsing a tree.

KON R

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tree Patterns

@ Translation from Tree to Assembly corresponds to parsing a tree.

o Looking for a covering of the tree, using tiles.

KON R

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tree Patterns

@ Translation from Tree to Assembly corresponds to parsing a tree.
o Looking for a covering of the tree, using tiles.

o The set of tiles corresponds to the instruction set.

KON R

A. Demaille, E. Renault, R. Levillain Instruction Selection

Missing nodes are plugs for temporaries: tiles read from temps, and create

temps.

N

Some architectures rely on a special register to produce 0.

A. Demaille, E. Renault, R. Levillain Instructi

Tiles: Loading load r; < M[rj + c]
(=) ©
< O D
| cone: QL cone:

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tiles: Storing store M[r;j 4+ c] + r;

i

A. Demaille, E. Renault, R. Levillain Instruction Selection

Simple Instruction: Translation 2

ti t18 @
dd 20 <- t17
e @ O
movem M[t20] <- M[t21]
© @ =>
Coom 85

load t17 <- M[fp + a]

A. Demaille, E. Renault, R. Levillain Instruction Selection

Simple Instruction: Translation 3

ddi t17 <- r0 +
:dd1 t18 <- . = :17
load t19 <- M[t18 + 0]

ti t20
dd t22 <- t19 +

add t24 <- T+ 23

load t25 <- M[t24 + 0] —
s::re M[t22 + 0] <- t25 @
CIXCTIY

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)

o there can be several solutions

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)

@ there can be several solutions
@ given a cost function, some are better than others:

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)
@ there can be several solutions
@ given a cost function, some are better than others:

e some are locally better, optimal coverings
(no fusion can reduce the cost),

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)

o there can be several solutions

@ given a cost function, some are better than others:

e some are locally better, optimal coverings
(no fusion can reduce the cost),
e some are globally better, optimum coverings.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Translating a Simple Instruction

@ There is always a solution
(provided the instruction set is reasonable)

o there can be several solutions

@ given a cost function, some are better than others:

e some are locally better, optimal coverings
(no fusion can reduce the cost),
e some are globally better, optimum coverings.

Nowadays this approach is too naive:
@ cpus are really layers of units that work in parallel.

@ Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.
@ Top-down strategy.
@ Cover the current node with the largest tile.
o Repeat on subtrees.
o Generate instructions in reverse-order after tile placement.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.

@ Top-down strategy.

@ Cover the current node with the largest tile.

@ Repeat on subtrees.

o Generate instructions in reverse-order after tile placement.
Dynamic Programming Find an optimum tiling.

o Bottom-up strategy.

@ Assign cost to each node.

@ Cost = cost of selected tile + cost of subtrees.

@ Select a tile with minimal cost and recurse upward.

@ Implemented by code generator generators
(Twig, Burg, iBurg, MonoBURG, .. .).

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tree Matching

@ The basic operation is the pattern matching.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Tree Matching

@ The basic operation is the pattern matching.

@ Not all the languages stand equal before pattern matching. ..

A. Demaille, E. Renault, R. Levillain Instruction Selection

in Stratego

Select-swri :
MOVE (MEM(BINOP(PLUS, el, CONST(n))), e2) —
SEQ(MOVE(r2, e2), SEQ(MOVE(r1, el), sw-ri(r2, rl, n)))
where <new-atemp> el = rl; <new-atemp> e2 = r2

Select-swr :
MOVE(MEM(el), e2) — SEQ(MOVE(r2, e2), SEQ(MOVE(ri1, el), sw-r(r2, r1)))
where <new-atemp> el = rl; <new-atemp> e2 = 12

Select-nop :

MOVE(TEMP(r), TEMP(r)) — NUL
Select-nop :

MOVE(REG(r), REG(r)) — NUL

Select-mover :

MOVE(TEMP(r), TEMP(t)) — move(TEMP(r), TEMP(t)) where <not(eq)> (r, t)
Select-mover :

MOVE(TEMP(r), REG(t)) — move(TEMP(r), REG(t)) where <not(eq)> (r, t)
Select-mover :

MOVE(REG(r), TEMP(t)) — move(REG(r), TEMP(t)) where <not(eq)> (r, t)
Select-mover :

MOVE(REG(r), REG(t)) — move(REG(r), REG(t)) where <not(eq)> (r, t)

A. Demaille, E. Renault, R. Levillain Instruction Selection

in Haskell: Ir.hs [Anisko, 2003]

module Ir (Stm (Move, Sxp, Jump, CJump, Seq, Label,
LabelEnd, Literal),
)

where

data Stm a =
Move { ma :: a, lval :: Exp a, rval :: Exp a }

| Sxp a (Exp a)

| Jump a (Exp a)

| CJump { cja :: a,
rop :: Relop, cleft :: Exp a, cright :: Exp a,
iftrue :: Exp a, iffalse :: Exp a }

| Seq a [Stm a]

| Label { la :: a,

name :: String, size :: Int }
| LabelEnd a
| Literal { lita :: a,
litname :: String, litcontent :: [Int] }

A. Demaille, E. Renault, R. Levillain Instruction Selection

... in Haskell Eval.hs [Anisko, 2003]

module Eval (evalStm, ...)

where

import Ir

import Monad (Mnd, rfetch, rstore, rpush, rpop, ...)

import Result (Res (IntRes, UnitRes))
import Profile (profileExp, profileStm)

evalStm :: Stm Loc -> Mnd ()
evalStm stm@(Move loc (Temp _ t) e) =
do (IntRes r) <- evalExp e
verbose loc ["move", "(", "temp", t, ")", show rl]
profileStm stm
rstore t r

evalStm stm@(Move loc (Mem _ e) f) =
do (IntRes r) <- evalExp e
(IntRes s) <- evalExp f
verbose loc ["move", "(", "mem", show r, ")", show s]
profileStm stm
mstore r s

A. Demaille, E. Renault, R. Levillain Instruction Selection

... in Haskell Low.hs [Anisko, 2003]

module Low (lowExp, lowStms)
where import ...

lowStms :: Int -> [Stm Ann] -> Mnd Bool
lowStms _ [] = return True

lowStms level
((CJump _ _ e £ _ (Name _ s)) : (Label s’ _) : stms)
| s == g’ =
do a <- lowExp (level + 1) e
b <- lowExp (level + 1) £
c <- lowStms level stms
return $ a & b && c

lowStms level (CJump 1 _ e £ _ _
do awarn 1 ["invalid cjump"]
lowExp (level + 1) e
lowExp (level + 1) £
lowStms level stms
return False

: stms) =

A. Demaille, E. Renault, R. Levillain Instruction Selection

... in Haskell High.hs [Anisko, 2003]

module High (highExp, highStms)
where import ...

highStms :: Int -> [Stm Ann] -> Mnd Bool
highStms level ss =
do a <- sequence $ map (highStm level) ss
return (and a)

highStm :: Int -> Stm Ann -> Mnd Bool
highStm level (Move 1 dest src) =
do a <- highExp (level + 1) dest
a’ <- case dest of
Temp _ _ -> return True
Mem -> return True
-> do awarn (annExp dest)
["invalid move destination:",
show dest]
return False
b <- highExp (level + 1) src
return $ a && a’ & b

A. Demaille, E. Renault, R. Levillain Instruction Selection

52 lines matching "switch\\|case\\|default\\|//" in buffer codegen.cc.
28:switch (stm.kind_get ())

30:
36:
38:
41:
42:
44
45:
55:
57:
59:
61:
63:
69:
T1:
73:
T4:
77
87:
88:

case Tree::move_kind :
switch (dst->kind_get ())

case Tree::mem_kind : // dst
// MOVE (MEM (...), ...)
switch (src.kind_get ())
// MOVE (MEM (...), MEM (...))
case Tree::mem_kind : // src
default : // src
// MOVE (MEM (...) , el)
switch (addr->kind_get ())
case Tree::binop_kind : // addr
// MOVE (MEM (BINOP (..., ..., ...)) , el)
switch (binop.oper_get ())
case Binop::minus:
case Binop::plus:
// MOVE (MEM (BINOP (+/-, el, CONST (i))),
// MOVE (MEM (BINOP (+/-, CONST (i), el)) ,
default:
// MOVE (MEM (BINOP (Z.»., 3’.3=%.)F ,249

A. Demaille, E. Renault, R. Levillain Instruction Selection

case Node::move_kind :

DOWN_CAST (Move, move, stm);
const Exp* dst = move.dst_get (); const Exp* src = move.src_get ();
switch (dst->kind_get () {

case Node::mem_kind : { // dst
DOWN_CAST (Mem, mem, *dst);
// MOVE (MEM (...), ...)
switch (src.kind_get ()) {
// MOVE (MEM (...), MEM (...))
case Node::mem_kind : // src

default : { // src
// MOVE (MEM (...) , el)
const Exp* addr = dst.exp_get ();
switch (addr->kind_get () {
case Node::binop_kind : { // addr
// MOVE (MEM (BINOP (. 5 o))
DOWN_CAST (Binop, blnop, *addr),
const Exp* binop_left = binop.left_get ();
const Exp* binop_right = binop.right_get ();
short sign = 1;
switch (binop.oper_get () {
case Binop::minus: sign = -1;
case Binop::plus:
// MOVE (MEM (BINOP (+/-, el, CONST (i))), e2)
if (binop_right->kind_get () == Node::const_kind)
std::swap (binop_left, binop_right);
// MOVE (MEM (BINOP (+/-, CONST (i), el)) , e2)
if (binop_left->kind_get () == Node::const_kind) {
DOWN_CAST (Const, const_left, *binop_left);
emit (_assembly->store_build (munchExp (src),
munchExp (* binop_: rlght)

, el)

ille, E. Renault, R. Levi

Break down long switches into smaller functions.

A. Demaille, E. Renault, R. Levillain Instruction Selection

Twig, Burg, iBurg [Fraser et al., 1992]

w/x o0 ox/

enum { ADDI=309, ADDRLP=295, ASGNI=53, CNSTI=21, CVCI=85,
I0I=661, INDIRC=67 };

/* ... x/

%}

%term ADDI=309 ADDRLP=295 ASGNI=53

%term CNSTI=21 CVCI=85 I0I=661 INDIRC=67

Boio

/* ... *x/

A. Demaille, E. Renault, R. Levillain Instruction Selection

Twig, Burg, iBurg [Fraser et al., 1992]

V& S Y

He

stmt: ASGNI(disp,reg) = 4 (1);
stmt: reg = 5;

reg: ADDI(reg,rc) = 6 (1);

reg: CVCI(INDIRC(disp)) = 7 (1);
reg: I0I = 8;

reg: disp = 9 (1);

disp: ADDI(reg,con) = 10;
disp: ADDRLP = 11;

rc: con = 12;
rc: reg = 13;
con: CNSTI = 14;
con: I0I = 15;
Toth

/* ... %/

A. Demaille, E. Renault, R. Levillain Instruction Selection

MonoBURG

binop: Binop(lhs : exp, rhs : Const)
{
auto binop = tree.cast<Binop>();
auto cst = rhs.cast<Const>();
EMIT(IA32_ASSEMBLY
.binop_build(binop->oper_get(), lhs->asm_get(),
cst->value_get(), tree->asm_get()));

3

binop: Binop(lhs : exp, rhs : exp)
{
auto binop = tree.cast<Binop>();
EMIT(IA32_ASSEMBLY
.binop_build(binop->oper_get(), lhs->asm_get(),
rhs->asm_get (), tree->asm_get()));

A. Demaille, E. Renault, R. Levillain Instruction Selection

Bibliography |

E

E

Anisko, R. (2003).
Havm.
http://tiger.lrde.epita.fr/Havm.

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

Fraser, C. W., Hanson, D. R., and Proebsting, T. A. (1992).
Engineering a simple, efficient code-generator generator.
ACM Letters on Programming Languages and Systems, 1(3):213-226.

Larus, J. R. (1990).

SPIM S20: A MIPS R2000 simulator.

Technical Report TR966, Computer Sciences Department, University
of Wisconsin—Madison.

A. Demaille, E. Renault, R. Levillain Instruction Selection

http://tiger.lrde.epita.fr/Havm

Liveness Analysis

Akim Demaille Etienne Renault Roland Levillain
first. last@lrde.epita.fr

EPITA — Ecole Pour I'Informatique et les Techniques Avancées

May 19, 2018

Liveness Analysis

© Control Flow Graph
© Liveness
© Various Dataflow Analysis

Q@ |Interference Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Control Flow Graph

© Control Flow Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Control Flow Graph [Appel, 1998]

L1:

* 2
N goto L1
return c

.y oo
o
+
o

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Control Flow Graph [Appel, 1998]

L1:

* 2
N goto L1
return c

.y oo
o
+
o

return c

A. Demaille, E. Renault, R. Levillain Liveness Analysis

1+2 %3

A. Demaille, E. Renault, R. Levillain Liveness Analysis

7's Pre-Assembly

tc_main:
Allocate frame
move $x13, $ra 11:
move $x5, $s0 move $s0, $x5
move $x6, $si move $s1, $x6
move $x7, $s2 move $s2, $x7
move $x8, $s3 move $s3, $x8
move $x9, $s4 move $s4, $x9
move $x10, $sb move $s5, $x10
move $x11, $s6 move $s6, $x11
move $x12, $s7 move $s7, $x12
10: move $ra, $x13
1i $x1, 1 # Deallocate frame
1i $x2, 2 jr $ra
mul $x3, $x2, 3
add $x4, $x1, $x3

u]
8
I
[l
!

7's Flowgraph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

112&3

A. Demaille, E. Renault, R. Levillain Liveness Analysis

7000's Pre-Assembly

tc_main: 10:
=) 1i $x1, 1
Allocate frame .
move $x6, $ra 1 By 8
18 ’ bne $x5, 0, 13
1i $x3, 1 14: " 6x1
bne $x3, 0, 15 ey ’
16: ’
° 1i $x4, 2 move f;‘o’ el
bne $x4, 0, 10 15: J
11: ’) 07
1i $x0, 0 ls. !
12: ’
17 move $ra, $x6
’ # Deallocate frame
J 19 .
jr $ra

u]
8
I
[l
!

7000's Flowgraph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

VEHESS

© Liveness

A. Demaille, E. Renault, R. Levillain Liveness Analysis

VEHESS

a :=0
b:=a+1
/
c:=c+b
a i="bi* 2
a<N

4

Liveness Anal

VEHESS

a:=0 a:=0
b :=a+ 1 b:=a+1
/ /
c:=c+b c:=c+b
'
a :=b * 2 a:=b * 2
a <N a <N

4

return c return c

Liveness Anal

VEHESS

4

return c

e, E. Renault, R. Levillain

a <N

return c

Liveness Anal

Dataflow Equations for Liveness Analysis

in[n] = wuse[n] U (out[n] \ def[n])
out[n] = U in[s]
sesucc[n]

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation

use def in out | in out | in out | in out
1 a
2 a b
3 | bc c
4 b a
5 a
6 [¢
use def in out | in out | in out
1 a
2 a b in[n]
3 | bc c out[n]
4 b a
5 a
6 [¢

use[n] U (out[n] \ def[n])

U in[s]

s€succ[n]

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

Liveness Calculation

1st step

use def in out | in out | in out | in out
1 a
2 a b a
3 | bc c bc
4 b a
5 a a
6 [¢

use def in out | in out | in out
1 a
2 a b in[n]
3 | bc c out[n]
4 b a
5 a
6 [¢

use[n] U (out[n] \ def[n])

U in[s]

s€succ[n]

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

Liveness Calculation

1st step 2nd step

use def in out | in out | in out | in out
1 a a
2 a b a a bc
3 | bc c bc bc b
4 b a a
5 a a ac
6

use def in out | in out | in out
1 a
2 a b in[n]
3 | bc c out[n]
4 b a
5 a
6 [¢

use[n] U (out[n] \ def[n])

U in[s]

s€succ[n]

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

Liveness Calculation

Ist step 2nd step 3rd step

use def in out | in out | in out | in out
1 a a a
2 a b a a bc | ac bc
3 | bc c bc bc b bc b
4 b a a b a
5 a a ac ac ac
6 ¢

use def in out | in out | in out
1 a
2 a b in[n]
3 | bc c out[n]
4 b a
5 a
6 [¢

use[n] U (out[n] \ def[n])

U in[s]

s€succ[n]

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

Liveness Calculation

Ist step 2nd step 3rd step 4th step
use def in out | in out | in out | in out
1 a a a ac
2 a b a a bc | ac bc | ac bc
3 | bc c bc bc b bc b bc fe
4 b a a b a b ac
5 a a ac ac ac ac ac
6 [¢ ¢ c
use def in out | in out | in out
1 a
2 a b in[n]
3 | bc c out[n]
4 b a
5 a
6 [¢

use[n] U (out[n] \ def[n])

U in[s]

s€succ[n]

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

Liveness Calculation

Ist step 2nd step 3rd step 4th step

use def in out | in out | in out | in out
1 a a a ac
2 a b a a bc | ac bc | ac bc
3 | bc c bc bc b bc b bc fe
4 b a b b a b a b ac
5 a a a a ac | ac ac | ac ac
6 [¢ [¢ ¢ c

5th step

use def in out | in out | in out
1 a [¢ ac
2 a b ac bc in[n] = use[n] U (out[n] \ def[n])
3 | bc c bc b out[n] = U infsl
4 b a bC ac sE€succ|n]
5 a ac ac
6 [¢

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation

Ist step 2nd step 3rd step 4th step

use def in out | in out | in out | in out
1 a a a ac
2 a b a a bc | ac bc | ac bc
3 | bc c bc bc b bc b bc fe
4 b a b b a b a b ac
5 a a a a ac | ac ac | ac ac
6 [¢ [¢ ¢ c

5th step 6th step

use def in out | in out | in out
1 a [¢ ac c ac
2 a b ac bc | ac bc in[n] = use[n] U (out[n] \ def[n])
3 | bc c bc b bc bc out[n] = U infsl
4 b a bc ac | bc ac sesuccln]
5 a ac ac ac ac
6 [¢ [¢

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation

Ist step 2nd step 3rd step 4th step

use def in out | in out | in out | in out
1 a a a ac
2 a b a a bc | ac bc | ac bc
3 | bc c bc bc b bc b bc fe
4 b a b b a b a b ac
5 a a a a ac | ac ac | ac ac
6 [¢ [¢ ¢ c

5th step 6th step 7th step

use def in out | in out | in out
1 a [¢ ac [¢ ac ¢ ac
2 a b ac bc ac bc ac bc in[n] = use[n] U (out[n] \ def[n])
3| bc C bc b bc bc | bc bc outn] = U infsl
4 b a bc ac | bc ac | bc ac s€succln]
5 a ac ac | ac ac | ac ac
6 [¢ [¢ ¢

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation (Forward)

Ist step 2nd step 3rd step 4th step

use def in out | in out | in out | in out
1 a a a ac
2 a b a a bc | ac bc | ac bc
3 | bc c bc bc b bc b bc fe
4 b a b b a b a b ac
5 a a a a ac | ac ac | ac ac
6 [¢ [¢ ¢ c

5th step 6th step 7th step

use def in out | in out | in out
1 a [¢ ac [¢ ac ¢ ac
2 a b ac bc ac bc ac bc in[n] = use[n] U (out[n] \ def[n])
3| bc C bc b bc bc | bc bc outn] = U infsl
4 b a bc ac | bc ac | bc ac s€succln]
5 a ac ac | ac ac | ac ac
6 [¢ [¢ ¢

Calculation done following forward control-flow edges.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation (Backward

use def || out in | out in | out in
6 [¢
5 a in[n] = use[n] U (out[n] \ def[n])
4 b a out[n] = U infsl
3 bC C s€succ|n]
2 a b
1 a

Calculation done following reverse control-flow edges.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Liveness Calculation (Backward

1st step
use def out in | out in | out in

6 c
5 a [¢ ac
4 b a ac bc
3 | bc c bc bc
2 a b bc ac
1 a ac c

in[n]

out[n]

Calculation done following reverse control-flow edges.

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

use[n] U (out[n] \ def[n])

J in[s]

s€succ[n]

Liveness Calculation (Backward)

Ist step 2nd step
use def out in | out in | out in

6 c C
5 a [¢ ac ac ac
4 b a ac bc | ac bc
3 | bc c bc bc | bc bc
2 a b bc ac | bc ac
1 a ac c ac C

in[n]

out[n]

Calculation done following reverse control-flow edges.

A. Demaille, E. Renault, R. Levillain

Liveness Analysis

use[n] U (out[n] \ def[n])

J in[s]

s€succ[n]

Liveness Calculation (Backward)

1st step 2nd step 3rd step

use def || out in | out in | out in

6 c C [¢
5 a [¢ ac ac ac ac ac in[n]
4 b a ac bc | ac bc | ac bc out[n]

3 | bc c bc bc | bc bc| bc bc

2 a b bc ac | bc ac | bc ac

1 a ac c ac C ac [¢

Calculation done following reverse control-flow edges.

A. Demaille, E. Renault, R. Levillain

use[n] U (out[n] \ def[n])

J in[s]

s€succ[n]

Liveness Analysis

Control Flow Graph [Appel, 1998]

a:=0
|
v
l9) g= +1
a:=0 3
L1: b :=a + 1
c :=c+b
a :=b x 2
if a < N goto L1
return c —
\
a<N

\ 4

return c

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Conservative Approximation

Suppose d a variable not used in the fragment of code

Another Solution

use def || out in
1 a
2| a b
3| bc c
41 b a
5
6

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Conservative Approximation

Suppose d a variable not used in the fragment of code

Another Solution

use def || out in
1 a cd acd
2| a b acd bed
3| bc c bcd bcd
41 b a bcd acd
5 acd acd
6 C

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Conservative Approximation

c>5D

VAN

return a return c

A. Demaille, E. Renault, R. Levillain Liveness Analysis

A. Demaille, E. Renault, R. Levillain Liveness Analysis

ors’ Flowgraph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

ors' Liveness Graph

iveness Analysis

Various Dataflow Analysis

© Various Dataflow Analysis

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Optimizing Compiler

First step toward optimizing compilers
@ How definitions and uses are related to each other

@ What value a variable may have at a given point

Constant propagation

Common sub-expression elimination
o Copy propagation

Dead Code Elimination

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Constant propagation

An ambiguous definition is a statement that might or not assign a

temporary t. For instance, a call may sometimes modifies t and sometimes
not.

We don't have this problem for tiger due to excaping variables.
Don't loose optimisation! Consider every definiton as ambiguous

We need to define the set of definitions that reach the begining and the
end of each node.

@ gen: when enter this statement, we know that we will reach the end of
it

@ kills: any statement that invalidates a gen
@ begin[n]: which statements can reach the begining of statement n
@ end[n]: which statements can reach the end of statement n

. Demaille, E. Renault, R. Levillain Liveness Analysis

Reaching definition [Appel, 1998]

=5
€ 5= 1
L1: if ¢ > a goto L2
€ =@ F €
goto L1
L2: a :=c - a
c :=0

A. Demaille, E. Renault, R. Levillain Liveness Analysis

gen kills || begin end | begin end begin end
1 1 6
2 2 4,7
3
4 4 2,7
5
6| 6 1
7 7 2,4
end[n] = gen[n]U (begin[n] \ kills[n])
begin[n] = U end[p]
pEpred[n]

A. Demaille, E. Renault, R. Levillain Liveness Analysis

1st step

A. Demaille, E. Renault, R. Levillain

pEpred[n]

gen kills || begin end | begin end begin end
1 1 6 1
2 2 4,7 1 1,2
3 12 1.2
4 4 2,7 1,2 1,4
5 1,4 1,4
6| 6 1 12 26
7|7 2,4 26 67
end[n] = gen[n]U (begin[n] \ kills[n])
begin[n] = U end[p]

Liveness Analysis

1st step 2nd step

gen kills || begin end | begin end begin end
1 1 6 1 1
2 2 47 1 1,2 1 1,2
3 1,2 1,2 1,24 124
4 4 2,7 1,2 1,4 124 14
5 1,4 1,4 1,4 1,4
6 6 1 1,2 2,6 1,24 24,6
7 7 2,4 2,6 6,7 246 6,7
end[n] = gen[n] U (begin[n] \ kills[n])
begin[n] = U end[p]
pEpred[n]

A. Demaille, E. Renault, R. Levillain Liveness Analysis

A. Demaille, E. Renault, R. Levillain

pEpred[n]

1st step 2nd step 3rd step
gen kills || begin end | begin end begin end
1 1 6 1 1 1
2 2 4,7 1 1,2 1 1,2 1 1,2
3 1,2 1,2 124 124 124 124
4 4 2,7 1,2 1,4 1,2,4 1,4 12,4 1,4
5 1,4 1,4 1,4 1,4 1,4 1,4
6 6 1 12 26 124 24,6 124 246
7 7 2,4 26 67 246 67 2,4,6 6,7
end[n] = gen[n]U (begin[n] \ kills[n])
begin[n] = U end[p]

Liveness Analysis

26 / 39

Constant Propagation

o If we have a statement d; : t := ¢, with ¢ constant, and another
statement d> that uses t.

@ t is constant
o if di reaches d>» and no other definition of t reaches d>

o then we can rewrite d

In the previous example, only one definition of a reaches statement 3 so we
can replace ¢ > a by ¢ > 5.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Copy Propagation

o If we have a statement dj : t := z, with z variable, and another
statement d> that uses t.

@ t is constant

o if di reaches d» and no other definition of t reaches d» and the is no
definition of z in all pathes between d; and d>

o then we can rewrite do

Good register allocator will automatically detects some such cases.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Optimizing compiler

The removal of dead statements (or other optimizations) might introduce
new dead statements.

To avoid the need for repeated global calculation, several strategies exist:

@ Cutoff: perform no more than k round

o Cascading analysis: predict the cascade of effects of an optimization.
Value numbering is a typical case of cascading analysis

@ Incremental dataflow analysis: patch the dataflow after applying an
optimization.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Interference Graph

Q@ |Interference Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Interference Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Register Allocation

a :=0 rl :=0

Li1: b :=a + 1 Li: r1 :=r1 + 1
c:=c+b i= + rl
a :=b x 2 rl = rl % 2
if a < N goto L1 if r1 < N goto L1
return c return

A. Demaille, E. Renault, R. Levillain Liveness Analysis

7's Interference Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Q]
—
(]
(©)
c
()
-
L
-
(]
)
e
..S
(@)
(@)
o
N~

let function fact (n : int) : int =
if n = 0 then
1
else
n * fact (n - 1)
in
fact (12)
end

A. Demaille, E. Renault, R. Levillain Liveness Analysis

fact's Liveness Graph

A. Demaille, E. Renault, R. Levillain Liveness Analysis

fact's Interference Graph

Bibliography |

[Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

A. Demaille, E. Renault, R. Levillain Liveness Analysis

Register Allocation

Akim Demaille Etienne Renault Roland Levillain
first. last@lrde.epita.fr

EPITA — Ecole Pour I'Informatique et les Techniques Avancées

May 19, 2018

Register Allocation

© Interference Graph
© Coloring by Simplification

© Alternatives to Graph Coloring

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph

© Interference Graph

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph

|

b := + 1
A
@ =c+bi

!
a:=b*2l
—Y

a <N

return c

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph

|

b := + 1
A
@ =c+bi

!
a:=b*2l
—Y

a <N

return c

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph

|

b := + 1

return c

A. Demaille, E. Renault, R. Levillain Register Allocation

Register Allocation

L1i: +1
+ Db
* 2
N goto L1

return c

‘p o op
TR
AN T O P O

A. Demaille, E. Renault, R. Levillain Register Allocation

Register Allocation

L1: + 1
+ Db
* 2
N goto L1

return c

‘p o op
TR
AN T O P O

A. Demaille, E. Renault, R. Levillain Register Allocation

Register Allocation

L1: + 1
+b
* 2
N goto L1

return c

‘p o op
TR
AN T O P O

L1:

rl :=0

rl :=r1 + 1
i= W+ il

rl = rl % 2

if rl < N goto L1
return

A. Demaille, E. Renault, R. Levillain

Register Allocation

Coloring by Simplification

@ Coloring by Simplification
@ Spilling
o Coalescing
@ Precolored Nodes
@ Implementation

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph [Appel, 1998]

Four registers: rl, r2, r3, r4.
live in: k j
= [j + 12]
=k -1
=g *h
:= [j + 8]
:= [j + 16]
[£]
= e + 8
1= ¢
i=m + 4
:=b
e out: d k j

S im0 o B O H B0
i

()
[

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

=

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

R B N Q

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

| 5N Qe

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 5

| BN Qw0

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 6

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 7

| 5 N Q. 0 Hh T

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 8

C
b
f
e
J
d
k
h
g

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 9

m
C
b
f
e
J
d
k
h
g

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Color 9

e B N Q. o o o B

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 8

] B N Qa«w 0o Hh T o

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 7

| 5 N Q. 0 Hh T

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 6

g B = Q. 0 Hh

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 5

| BN Qw0

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 4

| 5N Qe

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 3

R B N Q

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 2

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 1

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Color 0

A. Demaille, E. Renault, R. Levillain Register Allocation

live in: k j
= [j + 12]
=k -1
=g *h
= [j + 8]
:= [j + 16]
1= [f]

:=m + 4

- a0 o B 0o Hh B0

()
1
o

live out: d k j

live in:

rd :=

rd :=
rl :=

rd :=
rl :=

rl

[r3 + 12]
rl -1
rd *

[r3 + 8]
[r3 + 16]
[~2]
r4d + 8

rl + 4

live out: r4d ril

A. Demaille, E. Renault, R. Levillain

Register Allocation

Simple Register Allocation

)

—>»Build—>» Simplify—>» Select —>»

build the conflict graph from the program

A. Demaille, E. Renault, R. Levillain Register Allocation

Simple Register Allocation

)

—>»Build—>» Simplify—>» Select —>»

build the conflict graph from the program

simplify the nodes with insignificant degree

A. Demaille, E. Renault, R. Levillain Register Allocation

Simple Register Allocation

)

—>»Build—>» Simplify—>» Select —>»

build the conflict graph from the program
simplify the nodes with insignificant degree

select (or color) while rebuilding the graph.

A. Demaille, E. Renault, R. Levillain Register Allocation

Simple Register Allocation

)

—>»Build—>» Simplify—>» Select —>»

build the conflict graph from the program
simplify the nodes with insignificant degree
select (or color) while rebuilding the graph.

Based on:

A.B. Kempe. On the Geographical problem of the four colors, Am.
J. Math 2, 193-200, 1879.

[Appel, 1998, Matz, 2003]

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, but What Color? [Matz, 2003]

o Usually, first-fit (registers are ordered).

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, but What Color? [Matz, 2003]

o Usually, first-fit (registers are ordered).

@ Trying caller save first helps.

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, but What Color? [Matz, 2003]

o Usually, first-fit (registers are ordered).
@ Trying caller save first helps.

o Biased Coloring. [Briggs, 1992]
Use a color already unavailable to our neighbors.

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

@ Coloring by Simplification
@ Spilling

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

A map can always be colored with 4 colors. ..

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

A map can always be colored with 4 colors. ..

But for graph coloring, there is no reason for:
@ this simple heuristics to always find a solution,

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

A map can always be colored with 4 colors. ..

But for graph coloring, there is no reason for:
@ this simple heuristics to always find a solution,

@ a solution to always exist. . .

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

@ Not enough registers
tl = t1 + t2

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

@ Not enough registers
tl = t1 + t2

@ So use the stack
[sp + 4] := [sp + 4] + [sp + 8]

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

@ Not enough registers
tl = t1 + t2

@ So use the stack
[sp + 4] := [sp + 4] + [sp + 8]

@ But use temporaries to do so!

t12 := [sp + 4]
t13 := [sp + 8]
t12 := t12 + t13

[sp + 4] := t12

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

@ Not enough registers
tl = t1 + t2

@ So use the stack
[sp + 4] := [sp + 4] + [sp + 8]

@ But use temporaries to do so!

t12 := [sp + 4]
t13 := [sp + 8]
t12 := t12 + t13

[sp + 4] := t12
@ Why should it solve the problem?

A. Demaille, E. Renault, R. Levillain Register Allocation

Register Allocation with Spills

2T A

Potential Actual
—>Build—>Simplify—>» ., —»Select—> iy

Rebuild the graph if there were any actual spills

spill when one cannot simplify, the (uses of the) temporary must
be rewritten using the stack.

rebuild but then, the conflict graph is to be rewritten
[Appel, 1998, Matz, 2003]

A. Demaille, E. Renault, R. Levillain

Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter

@ The spilling order matters

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter
@ The spilling order matters
@ Spilling decreases the degree of the neighbors

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

The simplification order does not matter
The spilling order matters
Spilling decreases the degree of the neighbors

... hence it enables additional simplifications

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

The simplification order does not matter
The spilling order matters
Spilling decreases the degree of the neighbors

... hence it enables additional simplifications

...so “first spilled, last served”

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter

@ The spilling order matters

@ Spilling decreases the degree of the neighbors
@ ...hence it enables additional simplifications

@ ...so “first spilled, last served”
o ...therefore: spill cheap temporaries

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter

@ The spilling order matters

@ Spilling decreases the degree of the neighbors
@ ...hence it enables additional simplifications

@ ...so “first spilled, last served”
o ...therefore: spill cheap temporaries
o few def/uses

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Who Should be Spilled?

@ The simplification order does not matter

@ The spilling order matters

@ Spilling decreases the degree of the neighbors
@ ...hence it enables additional simplifications

@ ...so “first spilled, last served”
o ...therefore: spill cheap temporaries

o few def/uses
e pay attention to loops

A. Demaille, E. Renault, R. Levillain Register Allocation

Optimistic Coloring

A. Demaille, E. Renault, R. Levillain Register Allocation

Optimistic Coloring

a

@ We miss many opportunities to avoid the stack

o
S

o Handle spills as if they were simplifie

O=0

o

(potential spills)

A. Demaille, E. Renault, R. Levillain Register Allocation

Optimistic Coloring

a

@ We miss many opportunities to avoid the stack

o
S

o Handle spills as if they were simplifie

O=0

o

(potential spills)
@ then try to color them

A. Demaille, E. Renault, R. Levillain Register Allocation

Optimistic Coloring

a

@ We miss many opportunities to avoid the stack

o
S

o Handle spills as if they were simplifie

O=0

o

(potential spills)
@ then try to color them

@ There might not be actual spills

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing

@ Coloring by Simplification

o Coalescing

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing

@ Some low-level form of copy propagation

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing

@ Some low-level form of copy propagation

@ While building traces we tried to remove jumps

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing

@ Some low-level form of copy propagation
@ While building traces we tried to remove jumps

@ While allocating registers, we try to remove moves

live-in: t2
tl = ...
t2 = t1 + t2
t3 = t2

t4 := t1 + t3
t2 := t3 + t4
tl := t2 - t4
live-out: t1

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing Improves the Coloralibility

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing Improves the Coloralibility
©

@

A. Demaille, E. Renault, R. Levillain Register Allocation

Coalescing Improves the Coloralibility
©

@

t1 and t4 have one neighbor less!

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.

o Coalesce a and b if

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.
@ Coalesce a and b if
Briggs ab has fewer than k neighbors of significant degree.

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.
@ Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.
@ Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

e of insignificant degree

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.
@ Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

e of insignificant degree

o already interfering with b

A. Demaille, E. Renault, R. Levillain Register Allocation

Yes, But Coalesce Who?

o Conservative Coalescing: don't make it harder.
@ Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

e of insignificant degree

o already interfering with b

o George's criterion is well suited for real registers

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph [Appel, 1998]

Four registers: rl, r2, r3, r4.
live in: k j

= [j + 12]

=k -1

=g *xh

:= [j + 8]

:= [j + 16]

:= [f]

= e + 8

= ¢

:=m + 4

=D

live out: d k j

A0 o8 0 H B
i

(S
|

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

=

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

j&b O,
c&d S

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 5

c&d

c&d

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 6

j&b

c&d
j&b TN
c&d ' :

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 7

j&b

ckd
j&b coon g
c&d ' -

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 8

{c&d}
&b
f " LT Lt

j&b
c&d

&b ol @ '

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 9

{c&d}

ijsb:
f " LT Lt
j&b .
cad e e
j&b N
c&d - -

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 9

{c&d}
&b
f " LT Lt

j&b
c&d

&b L 'f‘,_g_,-" ‘ '

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 8

m Jjsb
f e
j&b :

c&d
jteb FRLY:
c&d '

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 7

j&b

ckd
j&b coon g
c&d ' -

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 6

j&b

c&d
j&b TN
c&d ' :

A. Demaille, E. Renault, R. Levillain

Register Allocation

Interference Graph: Simplify 5

c&d S
j&b coon 9
c&d

k

h ko h

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

Jj&b
c&d

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

c&d

=

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Result

live in: k j
= [j + 12]
=k -1
=g *h
= [j + 8]
:= [j + 16]
1= [f]

i=m + 4

- a0 o B 0o Hh B0

()
1
o

live out: d k j

live in: r4
rl := [r4 + 12]
= -1
= rl %
rl := [r4 + 8]
= [r4 + 16]
r4d := [r3]
rl :=rl + 8
#rl :=rl
= + 4
rd4 :=rd
live out: ri rd

A. Demaille, E. Renault, R. Levillain

Register Allocation

Precolored Nodes

@ Coloring by Simplification

@ Precolored Nodes

A. Demaille, E. Renault, R. Levillain Register Allocation

Hard Registers

@ Some nodes are precolored: the real registers

A. Demaille, E. Renault, R. Levillain Register Allocation

Hard Registers

@ Some nodes are precolored: the real registers

o the stack pointer ($sp)
o the frame pointer ($£p)

A. Demaille, E. Renault, R. Levillain Register Allocation

Hard Registers

@ Some nodes are precolored: the real registers

the stack pointer ($sp)

the frame pointer ($£p)

the argument registers ($a0, $al, etc.)
the return value ($v0, $v1)

the return address ($ra)

clict

A. Demaille, E. Renault, R. Levillain Register Allocation

Hard Registers

@ Some nodes are precolored: the real registers

the stack pointer ($sp)

the frame pointer ($£p)

the argument registers ($a0, $al, etc.)
the return value ($v0, $v1)

the return address ($ra)

clict

@ They all interfere with each other

A. Demaille, E. Renault, R. Levillain Register Allocation

Hard Registers

@ Some nodes are precolored: the real registers

the stack pointer ($sp)

the frame pointer ($£p)

the argument registers ($a0, $al, etc.)
the return value ($v0, $v1)

the return address ($ra)

clict

@ They all interfere with each other

@ They cannot be simplified (infinite degree)

A. Demaille, E. Renault, R. Levillain Register Allocation

Callee & Caller Save Registers

@ It just rocks!

A. Demaille, E. Renault, R. Levillain Register Allocation

Callee & Caller Save Registers

@ It just rocks!
Caller Save Def'd by calls.

A. Demaille, E. Renault, R. Levillain Register Allocation

Callee & Caller Save Registers

@ It just rocks!

Caller Save Def'd by calls.
Callee Save Def'd at entry, used at exit of functions.

A. Demaille, E. Renault, R. Levillain Register Allocation

Callee & Caller Save Registers

@ It just rocks!

Caller Save Def'd by calls.
Callee Save Def'd at entry, used at exit of functions.

@ Register pressure will push temporaries live across calls into callee save.

A. Demaille, E. Renault, R. Levillain Register Allocation

Minimize the conflicts (“pressure”) with hard regs. Source and sink.

Routine: fact
10:
move $x11, $s0
move $x12, $s1

16:
move $s0, $x11
move $s1, $x12

H #®

+H+

def
def
def

def:
def:

use:

$s0, $s1...
: $x11 use: $s0
: $x12 use: $si

$s0 use: $x11
$s1 use: $x12

$fp, $ra, $sp,
$v0, $zero

A. Demaille, E. Renault, R. Levillain

Register Allocation

Example [Appel, 1998]

enter:
c =13
int a:=rl
i (int a, int b) b = 2
int d = 0; N
int e = a; € =&
do loop:
{ d :=d+b
d += b; e :=e -1
=& if e > 0 goto loop
} while (e > 0); rl :=d
return d;
} r3 := ¢
return
liveout: rl1, r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Example

enter:
c :=13
a :=rl
b := r2
d :=0
e := a
loop:
d :=d+b
e (= e -1
if e > 0 goto loop
rl :=d
r3 :=c
return
liveout: rl1, r3

A. Demaille, E. Renault, R. Levillain Register Allocation

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

a&e&rl
b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

a&e&rl
b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

a&e&rl
b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

a&e&rl
b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

b&r2
ake

A. Demaille, E. Renault, R. Levillain Register Allocation

ake

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

A. Demaille, E. Renault, R. Levillain Register Allocation

Spilling

enter:
o cl :=13
enter: Tl e
c :=1r3
a = 71 a = rl
’ b = r2
b :=r2 4 = 0
d :=0 ’
e = 2 e = a
1oop: loop:
: = o
d :(=d+0b d d b
e =e -1
e :=e -1 .
. if e > 0
if e > 0 goto loop
goto loop
rl :=d
3 = ¢ ril :=d
e c2 := [sp+8]
return r3 = 2
liveout: rl, r3 ’
return
liveout: r1, r3

A. Demaille, E. Renault, R. Levillain Register Allocation

enter:
cl :=1r3
[sp+8] := ci
a =rl
b =12
d =0
e = a

loop:
d :=d+ Db
e = e -1
if e > 0

goto loop

rl = d
c2 := [sp+8]
r3 = c2
return

liveout: ri1, r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

cl&r3&c2
cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

a&e
cl&r3&c2
cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

b&r2
a&e
cl&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

a&e&rl
b&r2
a&e
c1&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 5

d
a&e&rl
b&r2
a&e
c1&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 5

d
a&e&rl
b&r2
a&e
c1&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 4

a&e&rl
b&r2
a&e
cl&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 3

b&r2
a&e
cl&r3&c2
clé&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 2

a&e
cl&r3&c2
cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 1

cl&r3&c2
cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

Interference Graph: Simplify 0

cl&r3

A. Demaille, E. Renault, R. Levillain Register Allocation

enter: enter: enter:
cl := =
[sp+8] := c1 [sp+8] := [sp+8] :=
a :=rl rl :=ri
b = 1=
d =0 =0 =0
e = a rl :=rl
loop: loop: loop:
d :=d + Db 1= ik = +
e = e -1 rl :=1r1 -1 rl :=1r1 -1
if e > 0 if r1 >0 if r1 >0
goto loop goto loop goto loop
rl :=d rl := rl :=
c2 := [sp+8] = [sp+8] := [sp+8]
= c2 =
return return return
liveout: ril, # liveout: ri, # liveout: ril,

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Coloring by Simplification

@ Implementation

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic

@ Lower with heavy use of worklists

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic

@ Lower with heavy use of worklists
@ Queries on the conflict graph

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic

@ Lower with heavy use of worklists
@ Queries on the conflict graph
o lterate over neighbors, hence adjacency list

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic
@ Lower with heavy use of worklists

@ Queries on the conflict graph

o lterate over neighbors, hence adjacency list
o Existence of an edge between two nodes, hence bit matrix.

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

@ Naive implementation is quadratic
@ Lower with heavy use of worklists

@ Queries on the conflict graph

o lterate over neighbors, hence adjacency list
o Existence of an edge between two nodes, hence bit matrix.

Use both!

A. Demaille, E. Renault, R. Levillain Register Allocation

Implementation

Naive implementation is quadratic

Lower with heavy use of worklists

Queries on the conflict graph

o lterate over neighbors, hence adjacency list
o Existence of an edge between two nodes, hence bit matrix.

Use both!
@ For more information, see [Appel, 1998].

©

A. Demaille, E. Renault, R. Levillain Register Allocation

Alternatives to Graph Coloring

© Alternatives to Graph Coloring

A. Demaille, E. Renault, R. Levillain Register Allocation

Register Allocation for Trees

Can be done during instruction selection with maximal munch
function SimpleAlloc (t)
for each nontrivial tile u child of t
SimpleAlloc (u)
for each nontrivial tile u child of t
n:=n -1
n:=n+1
assign rn to (the root of) t

[Appel, 1998]

A. Demaille, E. Renault, R. Levillain

Register Allocation

Bibliography |

(4 Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.

[Briggs, P. (1992).
Register Allocation via Graph Coloring.
PhD thesis, Rice University, Houston, Texas.

[d Matz, M. (2003).
Design and Implementation of a Graph Coloring Register Allocator for
gcc.
pages 151-169.

A. Demaille, E. Renault, R. Levillain Register Allocation

Instruction scheduling

Akim Demaille, Etienne Renault, Roland Levillain

May 19, 2018

=] & = E DA
CCMP2 Instruction scheduling

Table of contents

@ Dependencies

9 Dependency graph
© Instruction Pipeline
@ Minimizing stalls
© Loops unrolling

@ Managing caches

[} = =

CCMP2 Instruction scheduling

Dependencies analysis 1/2

the consistency

Two instructions are independent they can be permuted without altering

J

o = = £ DA
CCMP2 Instruction scheduling

Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering
the consistency

@ The 3 following instructions are independent
inst; : a <+ 42
inst, : b+« 51
inst3: c<« 0

CCMP2 Instruction scheduling May 19, 2018 3/57

Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering

the consistency

J

@ The 3 following instructions are independent

@ insty, insty and inst3 can then be reordered
inst; :
inst, :
insts :

insty :
insty :
insts :

a <+ 42
b+ 51
c+ 0

c+ 0
b « 51
a <+ 42

inst; :
inst, :
insts :

insty :
insts :
insts :

insty :
insts :
insty :

a<+ 42
b+ 51
c+ 0

a <+ 42
c+ 0
b+ 51

b« 51
c+ 0
a<+ 42

insts :
insty :
insts :

inst3 :
insty :
insty :

CCMP2 Instruction scheduling

c+ 0
a<+ 42
b+ 51

b« 51

a<+ 42
c+ 0

May 19, 2018

3/57

Dependencies analysis 2/2

the second one.

Two instructions are dependent if the first one needs to be executed before

J

o = = £ DA
CCMP2 Instruction scheduling

Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

@ The 3 following instructions are dependent, i.e. no reordering is
possible!
inst; : a <+ 42
inst, : b+« a+ 51
inst3: c<« b x 12

CCMP2 Instruction scheduling May 19, 2018 4/57

Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

@ The 3 following instructions are dependent, i.e. no reordering is
possible!

inst; : a <+ 42
inst, : b+« a+ 51
inst3: c<« b x 12

@ Two kind of dependencies:

» Data dependencies: the instruction manipulates a "variable”
computed by another instruction.

» Instruction dependencies: the instruction is a "cjump”, the next
instruction depends of the "cjump”.

CCMP2 Instruction scheduling May 19, 2018 4/57

Read after Write (RAW)

to it.

An instruction reads from a location after an earlier instruction has written

o = = £ DA
CCMP2 Instruction scheduling

J

Read after Write (RAW)

An instruction reads from a location after an earlier instruction has writtenJ
to it.

inst; : 1w $2, 0($4)
inst, : addi $6, $2, 42

CCMP2 Instruction scheduling May 19, 2018 5/57

Read after Write (RAW)

An instruction reads from a location after an earlier instruction has writtenJ
to it.

inst; : 1w $2, 0($4)
inst, : addi $6, $2, 42

inst; and insty cannot be permuted, otherwise inst, would read an old
value for $2

CCMP2 Instruction scheduling May 19, 2018 5/57

Write after Read (WAR)

from it.

An instruction writes to a location after an earlier instruction has read

o = = £ DA
CCMP2 Instruction scheduling

J

Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst; : 1w $2, 0($4)
inst, : addi $4, $12, 42

CCMP2 Instruction scheduling May 19, 2018 6 /57

Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst; : 1w $2, 0($4)
inst, : addi $4, $12, 42

inst; and insty cannot be permuted, otherwise inst; would read a new
value for $4

CCMP2 Instruction scheduling May 19, 2018 6 /57

Write after Write (WAW)

to it.

An instruction writes to a location after an earlier instruction has written

o = = £ DA
CCMP2 Instruction scheduling

J

Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written J
to it.

inst; : add $1, $2, $3
inst, : add $1, $5, $6

CCMP2 Instruction scheduling May 19, 2018 7/57

Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written J
to it.

inst; : add $1, $2, $3
inst, : add $1, $5, $6

inst; and insty cannot be permuted, otherwise inst; would write an old
value in $1

CCMP2 Instruction scheduling May 19, 2018 7/57

Why and When reordering?

We would like to reorder the instructions within each basic block in a way
which:

@ preserves the dependencies between those instructions (and hence the
correctness of the program)

@ achieves the minimum possible number of pipeline stalls, i.e. two
instructions simultaneously in the pipeline manipulates same data,
registers, etc.

The two problems can be addressed separately (whew!). J

CCMP2 Instruction scheduling May 19, 2018 8/57

Preserving and computing dependencies?

We construct a directed acyclic graph (DAG) to represent the
dependencies between instructions:

@ For each instruction in the basic block, create a corresponding vertex
in the graph

@ For each dependency between two instructions, create a corresponding
(annotated) edge in the graph. Note that this edge is annotated.

CCMP2 Instruction scheduling May 19, 2018 9/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,$2

s sw $3,12(%$10) | i7: sw $3,16($10)
is: 1w $4,8($10)
is: add $3,$1,$4

O

CCMP2 Instruction scheduling May 19, 2018 10/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,$2

s sw $3,12(%$10) | i7: sw $3,16($10)
is: 1w $4,8($10)
is: add $3,$1,$4

O
®

CCMP2 Instruction scheduling May 19, 2018 10/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,$2

g sw $3,12($10)
is: 1w $4,8($10)
is: add $3,$1,$4

i7: sw $3,16($10)

O ©®
®

CCMP2 Instruction scheduling May 19, 2018 10/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,$2

g sw $3,12($10)
is: 1w $4,8($10)
is: add $3,$1,$4

i7: sw $3,16($10)

O ©®
& ®

CCMP2 Instruction scheduling May 19, 2018 10/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
iy add $3,$1,$2

g sw $3,12($10)
is: 1w $4,8($10)
is: add $3,$1,$4

i7: sw $3,16($10)

O & ©®
& ®

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
iy add $3,$1,$2

g sw $3,12($10)
is: 1w $4,8($10)
is: add $3,$1,$4

i7: sw $3,16($10)

O & ©®
& O ©

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
iy add $3,$1,$2

g sw $3,12($10)
is: 1w $4,8($10)
is: add $3,$1,$4

i7: sw $3,16($10)

O & ©®
& O ©

®

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

s sw $3,12(%$10) | i7: sw $3,16($10)
is: 1w $4,8($10)

i6 . add $3,$1,$4

i 1w $1,0($10)
ih: 1w $2,4($10)
iy add $3,$1,$2

O— ©
& O ©

Type of dependency: RAW, WAW, WAR

®

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

s sw $3,12(%$10) | i7: sw $3,16($10)
is: 1w $4,8($10)

i6 . add $3,$1,$4

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

e ©®
& ® 1©

Type of dependency: RAW, WAW, WAR

®

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

s sw $3,12(%$10) | i7: sw $3,16($10)
is: 1w $4,8($10)

i6 . add $3,$1,$4

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

= ©
@ ® ©®

Type of dependency: RAW, WAW, WAR

®

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

g sw $3,12($10)
is: 1w $4,8($10)
i6 . add $3,$1,$4

i72

sw $3,16($10)

O—® ©
~ ®
ea\a

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling

May 19, 2018

10/57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

O—(D—_®
~ 0
ea\a

Type of dependency: RAW, WAW, WAR

g sw $3,12($10)
is: 1w $4,8($10)
i6 . add $3,$1,$4

i7: sw $3,16($10)

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

g sw $3,12($10)
is: 1w $4,8($10)
i6 . add $3,$1,$4

i7: sw $3,16($10)

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

g sw $3,12($10)
is: 1w $4,8($10)
i6 . add $3,$1,$4

i7: sw $3,16($10)

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 /57

Computing the dependency graph

i 1w $1,0($10)
ih: 1w $2,4($10)
is: add $3,$1,%$2

g sw $3,12($10)
is: 1w $4,8($10)
i6 . add $3,$1,$4

i7: sw $3,16($10)

Type of dependency: RAW, WAW, WAR

CCMP2 Instruction scheduling May 19, 2018 10 /57

Preserving dependencies: Critical Path 1/2

The critical path represents the longest path between two nodes. We add
delays (weights) to edges:

@ 0 for WAW and WAR dependencies
@ 2 for RAW dependencies with memory access
@ 1 for other RAW dependencies

CCMP2 Instruction scheduling May 19, 2018 11/57

Preserving dependencies: Critical Path 1/2

The critical path represents the longest path between two nodes. We add
delays (weights) to edges:

@ 0 for WAW and WAR dependencies
@ 2 for RAW dependencies with memory access
@ 1 for other RAW dependencies

CCMP2 Instruction scheduling May 19, 2018 11/57

Preserving dependencies: Critical Path 2/2

Any (reverse) topological sort of this DAG (i.e. any linear ordering of the
vertices which keeps all the edges “pointing forwards") will maintain the
dependencies and hence preserve the correctness of the program.

Algorithm:

@ Associate a weight 1 to all "instruction node”
@ For all nodes n; in topological postorder
» If n; is not a leaf
* For all nodes n; in succ(n;) do
ni.weight <— max (nj.weight, nj.weight+ delay(n;, n;))

Remember "important” edges during computations, they will form the
critical path. J

CCMP2 Instruction scheduling May 19, 2018 12 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

SN

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

i7 doesn't have successors, skip it!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(ip, i7)=2 > 1, change i weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jhee

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, is)=2 > 1, change i5 weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jhee

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

ig.weight=3 > 1, change iz weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jove

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(is, ia) + ig.weight=3 > 1, change i3 weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jov®

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(iy, i3) + i3.weight=7 > 1, change i; weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jov®

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

delay(iz, i3) + i3.weight=7 > 1, change i, weight!

CCMP2 Instruction scheduling May 19, 2018 13 /57

Computing the critical path

Delays: blue arrows 2, red and green 0

Jou?

CCMP2 Instruction scheduling May 19, 2018 13 /57

So many orders .. .with one critial path

i1,i2,i3,i4,i5,i6,i7 i1,i2,i3,i5,i4,i6,17 12,i1,13,i5,i4,i6,i7 12,i1,i3,i4,i5,i6,i7
i1,02,i5,i3,i4,i6,i7 i2,i1,i5,i3,i4,i6,17 11,i5,12,13,i4,i6,17 i2,i5,i1,13,i4,i6,i7
i5,01,12,13,i4,i6,17 i5,i2,11,13,i4,i6,i7

CCMP2 Instruction scheduling May 19, 2018 14 /57

So many orders .. .with one critial path

i1,i2,i3,i4,i5,i6,i7 i1,i2,i3,i5,i4,i6,17 12,i1,13,i5,i4,i6,i7 12,i1,i3,i4,i5,i6,i7
i1,02,i5,i3,i4,i6,i7 i2,i1,i5,i3,i4,i6,17 11,i5,12,13,i4,i6,17 i2,i5,i1,13,i4,i6,i7
i5,01,12,13,i4,i6,17 i5,i2,11,13,i4,i6,i7

All these permutations respect dependencies
but is there a best instruction scheduling?

CCMP2 Instruction scheduling May 19, 2018 14 /57

Performances and Pipeline

Not all orders are equivalents!)

@ Some dependencies can bring hazards that slow down performances
inside of the pipeline

@ Hazard occurs when:

» 1 instruction requires the previous instruction has finished
» 2 instructions need the same data at the same time: one of the two is
blocked

CCMP2 Instruction scheduling May 19, 2018 15 /57

Instructions Pipeline

The microprocessor (MIPS) contains 5 stages:

@ IF: Instruction Fetch

@ ID: Instruction Decode. Read operands from registers, compute the
address of the next instruction

@ 1 Execute instructions requiring the ALU

e ME Read/write into Memory

o WB Write Back. Results are written into registers.

instry
instrp
instr3
instrg.

instrg

cycle; cycley cycles cycleg cycles cycleg cycler cycleg cycleg
IF ID | BEX ME | WB }
IF | ID | EX | ME | WB |
! IF ID EX ME | WB !
: IF ID EX ME | WB
j IF 1D EX ME | WB
May 19, 2018

16 /57

Hazard: RAW dependencies 1/2

Some instruction requires a result computed by a previous one!)

Consider the following example:

cycley cycley cycles cycley cycles cycleg cycley
w2059 | IF | ID | BX | ME | WB |
addi $5, 52, 10 | IF | D £X | ME | WB |

@ 1w produces its result into $2 during the ME stage
@ ADDI requires $2 for the EX stage

@ In this example, 1 stall (cycle 4)

The goal of risc architectures is to produce one per cycle!)

CCMP2 Instruction scheduling May 19, 2018 17 /57

Hazard: RAW dependencies 2/2

Consider now the following example:

cyclep cycley cyclez

cycles cycles cycles cycle; cycleg
Iw 52, 0(54) IF | ID | 6X | ME | WB ' ' ;
addi $5,$2,10 | IF 1D NS X ME | WB :

add 512,59, 511 | j IF ID | EX | ME | WB

[} = =

DA
CCMP2 Instruction scheduling

Hazard: RAW dependencies 2/2

Consider now the following example:

cyclep cycley cycles cycley cycles cycleg cycley cycleg
w $2, 0(84) IF | ID | 6X | ME | WB ' ' ;
addi $5,$2,10 | IF 1D X ME | WB !
add $12, $9, $11 ! IF ID EX ME | WB
Let's look .. .instruction 3 is independent from the others
May 19, 2018

CCMP2 Instruction scheduling

18 /57

Hazard: RAW dependencies 2/2

Consider now the following example:

cyclep cycley cycles cycley cycles cycleg cycley cycleg

w $2, 0(84) IF | ID | 6X | ME | WB ' ' ;

addi $5,$2,10 | IF 1D X ME | WB !
add $12, $9, $11 ! ! IF ID EX ME | WB

Let's look .. .instruction 3 is independent from the others so we can

change the order!

cycley cycley cycles cycley cycles cycleg cycley cycleg

Iw $2, 0($4) IF 1D EX ME\ WB | |

add $12, 89, $11 | IF | ID | EX\ ME | WB ! |

addi 95, $2,10 ! ' IF ID |[Nex | ME | wB [

May 19, 2018

18 /57

Hazard: WAW dependencies

Two instructions write in the same register!)

Consider the following example:

cycley cyclep cycles cycleg cycleg cycleg
adiss s | IF [ID | BEX | ME | WB
addi $5, $2,10 ! IF ID | EX ME NWB

WAW do not produce stalls !
(even when writing in the same memory address)

CCMP2 Instruction scheduling May 19, 2018 19/57

Hazard: WAR dependencies

One instruction writes where a previous one reads!
Consider the following example:

cycley cycley cycles cyclegq cycles cycleg
addi $5, $11, 42 | 1F ID——LX | ME | WB
addi $11, 52, 10 | IF | ID | EX [MEWS |

WAR do not produce stalls !

=] F = = Qe
CCMP2 Instruction scheduling

Back to the example — without scheduling

i1 1w $1,0(310) | ia: sw $3,12($10) | i7: sw $3,16($10)

ib: 1w $2,4($10) | i5: 1w $4,8($10)

i3: add $3,%$1,%$2 ig: add $3,%$1,%$4

C1 <2 <3 Caq C5 <6 c7 <8 <9 <10 C11 C12 €13
W[[[Ex [ME] wB ' | | | \ | | |
o IF | ID | £X | ME | WB | | , , |
iy ! I IF 1D EX ME | WB ! I I I !
i | L i ID | UX | ME | WB ! ! ! :
s, | , IF ID | BX | ME | WB : : |
io 1 | I I I IF ID EX ME | WB '
P! ! ! ! . IF ID | X | ME | WB
May 19, 2018~ 21/57

Back to the example — without scheduling

i1 1w $1,0(310) | ia: sw $3,12($10) | i7: sw $3,16($10)

ib: 1w $2,4($10) | i5: 1w $4,8($10)

i3: add $3,%$1,%$2 ig: add $3,%$1,%$4

C1 <2 <3 Caq C5 <6 c7 <8 <9 <10 C11 C12 €13

W[[[Ex [ME] wB ' | | , \ | | ,
o IF | ID | £X | ME | WB | | , , |
iy ! I IF 1D EX ME | WB ! I I I !
i | L i ID | UX | ME | WB ! ! ! :
s, | , IF ID | BX | ME | WB : : |
io 1 | I I I IF ID EX ME | WB f
P! ! ! ! . IF ID | X | ME | WB

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!

CCMP2 Instruction scheduling

May 19, 2018

21/57

Minimizing Stalls — First approach

Each time we emit the next instruction, we should try to choose one which
@ P; does not conflict with the previous emitted instruction
e Py: is most likely to conflict if first of a pair (e.g. prefer 1w to add)

@ P3: is as far away as possible (along paths in the DAG) from an
instruction which can validly be scheduled last

CCMP2 Instruction scheduling May 19, 2018 22 /57

Minimizing Stalls — First approach

Each time we emit the next instruction, we should try to choose one which
@ P; does not conflict with the previous emitted instruction
e Py: is most likely to conflict if first of a pair (e.g. prefer 1w to add)

@ P3: is as far away as possible (along paths in the DAG) from an
instruction which can validly be scheduled last

Algorithm:
o Compute the dependency graph

@ While the list of candidate instructions is not empty
» |If one instruction satisfies Py, Py, and P3: remove it from the list and
emit it.
* Remove the instruction from the DAG and insert the newly minimal
elements into the candidate list.

» Otherwise emit a nop instruction

CCMP2 Instruction scheduling May 19, 2018 22 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: lw $4,8($10)
ig: add $3,%$1,%4

i7: sw $3,16($10)

Candidates = {iy, ip, is}
Final Order =

CCMP2

Instruction scheduling May 19, 2018 23 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {iy, ip, is}
Final Order =

Choose i7 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 23 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {iy, ip, is}

Final Order = iy

Choose i7 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 23 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

Candidates = {iy, ip, is}
Final Order =

i7: sw $3,16($10)

i1

Choose i7 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 23 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: lw $4,8($10)
ig: add $3,%$1,%4

i7: sw $3,16($10)

Candidates = {i2, is}
Final Order = i
CCMP2

Instruction scheduling May 19, 2018 24 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

Candidates = {i2, is}
Final Order = i

i7: sw $3,16($10)

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 24 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

Candidates = {i2, is}
Final Order =

i7: sw $3,16($10)

i1, I2

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 24 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {i2, is}

Final Order = iy, i

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 24 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: lw $4,8($10)
ig: add $3,%$1,%4

i7: sw $3,16($10)

Candidates = {is, i3}
Final Order = iy, io
CCMP2

Instruction scheduling May 19, 2018 25/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is, i3}

Final Order = iy, i»

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 25/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is, i3}

Final Order = iy, 02, is

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 25/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is, i3}

Final Order = iy, 02, is

Choose i5 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 25/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is}
Final Order = iy, ip, is
CCMP2

Instruction scheduling May 19, 2018 26 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is}
Final Order = iy, ip, is

Choose i3 since it satisfies P1, P2 and P3

CCMP2

Instruction scheduling May 19, 2018 26 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

i1, i2, is5, i3

Candidates = {is}
Final Order =

Choose i3 since it satisfies P1, P2 and P3

CCMP2

Instruction scheduling May 19, 2018 26 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

i1, i2, is5, i3

Candidates = {is}
Final Order =

Choose i3 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 26 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is}
Final Order = iy, io, is, i3
CCMP2

Instruction scheduling May 19, 2018 27 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

i1, i2, is, i3

Candidates = {is}
Final Order =

Choose i4 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 27 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

i1, I2, i5, i3, g

Candidates = {is}
Final Order =

Choose i4 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 27 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {is}
Final Order = iy, iy, is, i3, ia

Choose i4 since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 27 /57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: lw $4,8($10)
ig: add $3,%$1,%4

i7: sw $3,16($10)

Candidates = {ig}

Final Order = iy, io, is, i3, ia

CCMP2

Instruction scheduling May 19, 2018 28/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {ig}
Final Order = iy, iy, is, i3, ia

Choose ig since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 28/57

Applying scheduling algorithm to the example

il . 1w $1,0($10)
ip: lw $2,4(%$10)
i3: add $3,%$1,%$2

is: sw $3,12($10)
is: 1w $4,8($10)
ig: add $3,$1,$4

i7: sw $3,16($10)

Candidates = {ig}
Final Order = iy, io, is, i3, ia, ig

Choose ig since it satisfies Py, P> and P3

CCMP2

Instruction scheduling May 19, 2018 28/57

Applying scheduling algorithm to the example

i1 1w $1,0($10) | iz: sw $3,12($10)
ib: 1w $2,4($10) | is: 1w $4,8($10)
i3: add $3,%$1,%$2 ig: add $3,%$1,%4

i7: sw $3,16($10)

®

Candidates = {ig}
Final Order = iy, io, is, i3, ia, ig

Choose ig since it satisfies Py, P> and P3

CCMP2 Instruction scheduling May 19, 2018 28/57

Applying scheduling algorithm to the example

i1 1w $1,0($10) | iz: sw $3,12($10)
ib: 1w $2,4($10) | is: 1w $4,8($10)
i3: add $3,%$1,%$2 ig: add $3,%$1,%4

i7: sw $3,16($10)

®

Candidates = {i7}

Final Order = iy, ip, is, i3, is, ig

CCMP2 Instruction scheduling May 19, 2018 29 /57

Applying scheduling algorithm to the example

i1 1w $1,0($10) | iz: sw $3,12($10)
ib: 1w $2,4($10) | is: 1w $4,8($10)
i3: add $3,%$1,%$2 ig: add $3,%$1,%4

i7: sw $3,16($10)

®

Candidates = {i7}
Final Order = iy, io, is, i3, ia, ig

Choose i7 since it satisfies Py, P> and P3

CCMP2 Instruction scheduling May 19, 2018 29 /57

Applying scheduling algorithm to the example

i1 1w $1,0($10) | iz: sw $3,12($10)
ib: 1w $2,4($10) | is: 1w $4,8($10)
i3: add $3,%$1,%$2 ig: add $3,%$1,%4

i7: sw $3,16($10)

®

Candidates = {i7}
Final Order = iy, io, is, i3, ia, ig, i7

Choose i7 since it satisfies Py, P> and P3

CCMP2 Instruction scheduling May 19, 2018 29 /57

Applying scheduling algorithm to the example

i1: 1w $1,0($10) | iz: sw $3,12($10) | i7:
ip: 1w $2,4($10) |is: 1w $4,8($10)
i3: add $3,%$1,%$2 ig: add $3,%$1,%4

sw $3,16($10)

Candidates = {i7}
Final Order = iy, io, is, i3, ia, ig, i7

Choose i7 since it satisfies Py, P> and P3

CCMP2 Instruction scheduling May 19, 2018 29 /57

Applying scheduling algorithm to the example

iv: 1w $1,0($10) | is:

sw $3,12($10)

i72

sw $3,16($10)

ib: 1w $2,4($10) | i5: 1w $4,8($10)
is: add $3,$1,$2 |is: add $3,$1,$4
Final Order = i1, i2, i5, i3, i4, i6, i7
C1 c2 c3 Cq Cs C6 c7 cg Co <10 C11
I I I I
[| D] Ex [ME | wB ‘ | | |
o IF | ID | BX ME | WB | | |
is | \ IF D EX ME | WB : [|
i : : | IF ID | Bx ME | WB ! ‘
W | | | F ID | EX | ME | WB !
ig | I I I IF D EX ME | WB
i ! ‘ ‘ ! F D | &x ME | WB
e

30/57

CCMP2 Instruction scheduling

Applying scheduling algorithm to the example

i1: 1w $1,00$10) | is: sw $3,12($10) | i7: sw $3,16($10)

ib: 1w $2,4($10) | i5: 1w $4,8($10)
is: add $3,$1,$2 |ig: add $3,$1,$4

Final Order = i1, i2, i5, i3, i4, i6, i7

<1 [c3 [Cs 6 <7 cg = 10 c11
W[[m[ex [ME] wB ; | | ;
il IF | ID| BX | ME | WB | | |
is | \ IF D EX ME | WB : [|
i : : | IF ID | Bx ME | WB ! :
i | | | IF ID | EX | ME | WB
ig | I I I I IF D EX ME | WB
i ! ‘ ‘ ! ‘ F D | &x ME | WB

With scheduling: still 2 dependencies but 0 stalls and 11 cycles!

J

May 19, 2018

30/57

A word on scheduling strategies

@ Sometimes we cannot avoid some stalls

@ Computing the critical path can be smarter:

» Rather than attributing 1 as weight to every instruction, we can adjust
according to the real time of executing the instruction

» We can take advantages of the number of successors

> ... many yet-to-be-define heuristics!

e Computing the DAG of dependencies can be done in O(n?) by
scanning backwards through the basic block and adding edges as
dependencies arise

CCMP2 Instruction scheduling May 19, 2018 31/57

A word on performances

We can staticaI.Iy compute .instructions per cycle IPC=%. to
evaluate 2 possible scheduling.

In the previous example:

e without scheduling |PC:13 =0.53

o with scheduling IPC=% = 0.63 (better!)
. . . . _ 1
We can also statically compute cycle per instructions: CPl = 5¢.
The CPI lower bound is =25 _ i

B instructions: avec a is the number of instructions
for a given instruction type and [the associated cost.

CCMP2 Instruction scheduling May 19, 2018 32/57

Can we do better?

Consider the following code (representing a basic block):

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sSW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $0, Loop # branch s1!=0

CCMP2 Instruction scheduling May 19, 2018 33/57

Can we do better?

Consider the following code (representing a basic block):

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sSW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $0, Loop # branch s1!=0

€1 €2 €3 €4 Cs % , ¢ ¢ C Co cu c12 €3 C4 G5 C6
ip [IF D EX ME WB
i T F i) EX ME WB | | | | |
iz | IF D EX ME WB X | | | |
i | | IF 1D EX ME WB_ | X X X X
S 0 [{ ot we { ws |

CCMP2 Instruction scheduling May 19, 2018 33/57

Can we do better?

Consider the following code (representing a basic block):

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sSW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $0, Loop # branch s1!=0
C1 C2 c3 C4 C5 <6 <7 cg Co €10 C11 C12 C13 C14 €15 €16
ip [oF D EX ME | WB ! ! ! ! !
ip | F i) EX ME WB | | | | |
i3 | IF D EX ME WB , | | | |
in 1F D EX ME WB_ |))) ,
is IF [o T ex [M | wB |
16 cycles for 5 instructions that are all dependent!
IPC =0.31
ey B 66y

Loop Unrolling

@ Replicate loop body to expose more parallelism

@ Reduces loop-control overhead

CCMP2 Instruction scheduling May 19, 2018 34 /57

Loop Unrolling

@ Replicate loop body to expose more parallelism

@ Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling

int i; int i;
for (i =0;i < 100; ++i) || for (i = 0; i < 100; i+=5)
tabli] = tabli] +42; tabli] = tabl[i] +42;

tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i4+-2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

CCMP2 Instruction scheduling May 19, 2018

34/57

Loop Unrolling

@ Replicate loop body to expose more parallelism

@ Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling

With Loop Unrolling

int i;
for (i = 0; i < 100; ++i)
tab[i] = tab[i] +42;

int i

for (i = 0; i < 100; i+=5)
tab[i] = tab[i] +42;
tab[i+1] = tab[i+1] +42;
tab[i42] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Special care must be taken for pre and post loops operations (as well as J

intra-loop dependencies)

CCMP2 Instruction scheduling May 19, 2018 34 /57

Loop Unrolling — back to the example

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $0, Loop # branch s1!=0

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sSW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $0, Loop # branch s1!=0

Loop: 1w $t0, 0($s1) # tO=array element
addu $t0, $t0, $s2 # add scalar in s2
sW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $0, Loop # branch s1!=0

First duplicate N times the the body of the loop!)

CCMP2 Instruction scheduling

May 19, 2018 35/57

Loop Unrolling — back to the example

Loop: 1w
addu
swW
addi
1w
addu
sw
addi
1w
addu
sw
addi
bne

$to,
$t0,
$to,
$s1,
$to,
$to,
$to,
$s1,
$to,
$t0,
$to,
$s1,
$s1,

0($s1)
$t0, $s2
0($s1)
$s1,-4
0($s1)
$t0, $s2
0($s1)
$s1,-4
0($s1)
$to, $s2
0($s1)
$s1,-4
$0, Loop

tO=array element
add scalar in s2
store result

decrement pointer
tO0=array element
add scalar in s2
store result

decrement pointer
tO0=array element
add scalar in s2
store result

decrement pointer
branch s1!=0

Remove redundant labels and jump
(by supposing that we are able to do it!)

CCMP2 Instruction scheduling May 19, 2018

36 /57

Loop Unrolling — back to the example

Loop: 1w $t0, 0($s1) # tO0=array element
addu $t0, $t0, $s2 # add scalar in s2
sW $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
1w $t1, 0($s1) # tO=array element
addu $t1, $t1, $s2 # add scalar in s2
sW $t1, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
1w $t2, 0($s1) # tO=array element
addu $t2, $t2, $s2 # add scalar in s2
sw $t2, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer

bne $s1, $0, Loop # branch s1!=0

Use other temporaries name when possible!)

CCMP2 Instruction scheduling May 19, 2018 37/57

Loop Unrolling — back to the example

Loop: addi
1w
addu
sw
1w
addu
swW
1w
addu
sw
bne

$s1,
$to,
$to,
$to,
$t1,
$t1,
$t1,
$t2,
$t2,
$t2,
$s1,

$s1,-12
0($s1)
$t0, $s2
0($s1)
4($s1)
$t1, $s2
4($s1)
8($s1)
$t2, $s2
8($s1)
$0, Loop

decrement pointer
tO0=array element
add scalar in s2
store result

tO0=array element
add scalar in s2
store result

tO=array element
add scalar in s2
store result

branch s1!=0

Grab redundant operation and merge them carefully!

CCMP2 Instruction scheduling May 19, 2018

38/57

Loop Unrolling — back to the example

Loop: addi
1w
1w
1w
addu
addu
addu
sw
sw
sw
bne

$s1,
$to,
$t1,
$t2,
$to,
$t1,
$t2,
$to,
$t1,
$t2,
$s1,

$s1,-12
0($s1)
4($s1)
8($s1)
$t0, $s2
$t1, $s2
$t2, $s2
0($s1)
4($s1)
8($s1)
$0, Loop

decrement pointer for N=3
tO0=array element
tl=array element
t2=array element
add scalar in s2
add scalar in s2
add scalar in s2
store result

store result

store result

branch s1!=0

Schedule the instructions and renumber them (and update comments)!)

CCMP2 Instruction scheduling May 19, 2018 39/57

Pros & Cons

We avoid a lot of conditional jumps (and many stall hence)

We require 19 cycles for 11 instructions: IPC=0.57
(a lot better than the previous 0.31)

This trick allows to have more independent instructions to insert, and
thus, less stalls!

But we have now a prologue and an epilogue: i.e., two more basic
blocks

Require more temporaries: register allocation will be harder!

Try it by yourself in gcc -funroll-loops

CCMP2 Instruction scheduling May 19, 2018 40 /57

A very last word on Branch Hazards 1/2

@ Conditional jumps often introduce delays since we cannot pre-fetch

instrcutions

» Branch Outcome and Branch Target Address are ready at the end of

the EX stage (3th stage)

» Conditional branches are solved when PC is updated at the end of the
ME stage (4th stage)

@ Can we avoid them?

We only know ipe at cycle 5!

C1

2

<3

ca

c5

<6

c7

<8

bne $152,1o0p | IF | ID | EX | ME | WB | |
op | IF | ID | EX | ME | WB | |
hop 1! IF | ID | 6Xx | ME| WB ! |
o v | D | Bx | ME | WB !
inext ! ‘ IF ID | BEX ME | WB
May 19, 2018

41 /57

A very last word on Branch Hazards 2/2

@ X delayed slot: the X instructions after a branch are systematically
executed

@ The original SPARC and MIPS processors each used a single branch
delay slot to eliminate single-cycle stalls after branches

@ We need branch prediction... but nowadays, most of processors do it
for us (and use slt...)!

@ Some architectures have bypass between stages to avoid stalls

Avoid as possible floating points and jumps! J

CCMP2 Instruction scheduling May 19, 2018 42 /57

A very last word on Branch Hazards 2/2

@ X delayed slot: the X instructions after a branch are systematically
executed

@ The original SPARC and MIPS processors each used a single branch
delay slot to eliminate single-cycle stalls after branches

@ We need branch prediction... but nowadays, most of processors do it
for us (and use slt...)!

@ Some architectures have bypass between stages to avoid stalls

Avoid as possible floating points and jumps! J

"Do you program in mips?” she asked. "nop"”, he said.)

CCMP2 Instruction scheduling May 19, 2018 42 /57

Stalls due to caches

When the processor processor needs to access a data:

o If data is in cache: with a cost of 3 cycles

@ Otherwise: with a cost of 100 cycles

CCMP2 Instruction scheduling May 19, 2018 43 /57

Stalls due to caches

When the processor processor needs to access a data:

o If data is in cache: with a cost of 3 cycles

@ Otherwise: with a cost of 100 cycles

CACHE HIT

CPU

word transfert

Cache

CCMP2 Instruction scheduling May 19, 2018

43 /57

Stalls due to caches

When the processor processor needs to access a data:

o If data is in cache: with a cost of 3 cycles

@ Otherwise: with a cost of 100 cycles

CACHE HIT

CPU

Cache

CCMP2

word transfert

CACHE MISs

word transfert

block transfert

Instruction scheduling May 19, 2018

43 /57

Cache Fundamentals 1/2

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Memory

=] F = = £ DA

CCMP2 Instruction scheduling

Cache Fundamentals 1/2

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Memory

Access to adress 0x1, 4 words are fetched

o <5 = E T 9ac

CCMP2 Instruction scheduling

Cache Fundamentals 1/2

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Memory

Access to adress 0x5, 4 words are fetched

o <5 = E T 9ac

CCMP2 Instruction scheduling

Cache Fundamentals 1/2

Cache

Ox1 0x5 0x9 0x13 0x17 0x21
T [[[[[TTTT]
Memory

Access to adress 0x9, 4 words are fetched

CCMP2 Instruction scheduling May 19, 2018 44 /57

Cache Fundamentals 1/2

Cache

Ox1 0x5 0x9 0x13 0x17 0x21
N ([[[[[]
Memory

Access to adress 0x13, 4 words are fetched

CCMP2 Instruction scheduling May 19, 2018 44 /57

Cache Fundamentals 1/2

Cache

Ox1 0x5 0x9 0x13 0x17 0x21
CETT S | [[[[[[]
Memory

Access to adress 0x17, 4 words are fetched

First line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 /57

Cache Fundamentals 1/2

Cache
Ox1 0x5 0x9 0x13 0x17 0x21
TN [[[[]
Memory

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!

CCMP2 Instruction scheduling May 19, 2018 44 /57

Cache Fundamentals 1/2

Many strategies to put data into the cache:
@ Direct Mapping:
» The address is decomposed in 3 parts: tag (8b), line (22b), and
word(2b)
» Each block of main memory maps to only one cache line, i.e.
block-size = cache-line-size
» Simple, Inexpensive, and fixed location for given block

@ Associative Mapping:

» A main memory block can load into any line of cache

» Memory address is interpreted as tag and word

» Tag uniquely identifies block of memory

» Each block of main memory maps to only one cache line, i.e.
block-size = cache-line-size

Complex, Expensive, and no-fixed location for given block

v

CCMP2 Instruction scheduling May 19, 2018 45 /57

Prefetching

Fetch the data before it is needed (i.e. pre-fetch) by the program J

@ Eliminate cache misses

@ Involves predicting which address will be needed in the future (as for
branch prediction)

@ In contrast to branch prediction:

» incorrect prefetched data will simply not be used
> there is no need for state recovery

CCMP2 Instruction scheduling May 19, 2018 46 /57

Locality

@ Locality is the principle that future memory accesses are near past
accesses

@ Memories take advantage of two types of locality

» Temporal locality, i.e. near in time: we will often access the same data
again very soon

» Spatial locality, i.e. near in space/distance: our next access is often
very close to our last access (or recent accesses)

CCMP2 Instruction scheduling May 19, 2018 47 /57

Locality

@ Locality is the principle that future memory accesses are near past
accesses

@ Memories take advantage of two types of locality
» Temporal locality, i.e. near in time: we will often access the same data
again very soon

» Spatial locality, i.e. near in space/distance: our next access is often
very close to our last access (or recent accesses)

Some Instruction Set Architecture (ISA) allows to pre-fetch some data:
i.e., Humans or compilers has to insert (take advantage) of these
instructions

CCMP2 Instruction scheduling May 19, 2018 47 /57

Loops optimisations

We have already seen loops-unrolling to avoid stalls inside of the
processor. Other techniques exist to avoid stalls due to cache:

@ Loop Fission
Loop interchanging

Tabular Grouping

Loop reversal

°
°

@ Loop blocking
°

@ Loop tiling

°

CCMP2 Instruction scheduling May 19, 2018 48 /57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = BJil;

Cli] = C[i-1] + 1;

CCMP2 Instruction scheduling May 19, 2018 49 /57

Loop Fission 1/2

Consider the following code, and direct mapping strategy

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {
Ali] = BIi;
C[i] = C[i-1] + 1;
}

o & = = Qe
CCMP2 Instruction scheduling

Fetch A[i], A[i + 1], A[i + 2] and A[i + 3]

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = BJil;

Cli] = C[i-1] + 1;

Fetch B[/], B[i + 1], B[/ + 2] and BJ[i + 3]

CCMP2 Instruction scheduling May 19, 2018 49 /57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

A[i] = BJil;

Cli] = C[i-1] + 1;

Fetch C[i], C[i + 1], C[i + 2] and C[i + 3]

CCMP2 Instruction scheduling May 19, 2018 49 /57

Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {

Ali] = Bil;
Clil =Cli-1] + 1
Fetch C[i — 1] will probably conflict m
o Hopefully A[i], B[i] and C[i] will not conflict in the cache
o but ... C[i-1] will probably! J

CCMP2 Instruction scheduling May 19, 2018 49 /57

Loop Fission 2/2

Solution
Divide the loop into two:
@ Less pressure on cache

@ We can now insert padding to avoid conflicts

int A[1024]; padding[xx]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i)

Ali] = BJi];
for (int i = 1; i<1024; ++i)
Cli] = C[i-1] + 1;
Try it by yourself in gcc -ftree-loop-distribution J

CCMP2 Instruction scheduling May 19, 2018 50 /57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)
for (int i = 1; i<1024; ++i)
ALI[] = AL * 42;

In Fortran, the elements of an array are stored in memory contiguously by

column, and the original loop iterates over rows, potentially creating at

. A|lB|C]|.
each access a cache miss —5———F— isstored [A [D [B[E[C|F|

CCMP2 Instruction scheduling May 19, 2018 51/57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)
for (int i = 1; i<1024; ++i)
ALI[] = AL * 42;

Fetch A[j][i], Alj + 1][i]. Alj + 2][/]. and A[j + 3][/]

In Fortran, the elements of an array are stored in memory contiguously by

column, and the original loop iterates over rows, potentially creating at

. A|lB|C]|.
each access a cache miss —5———F— isstored [A [D [B[E[C|F|

CCMP2 Instruction scheduling May 19, 2018 51/57

Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)
for (int i = 1; i<1024; ++i)
ALI[] = AL * 42;

Fetch A[j + 1][i], A[j + 2][i], A[j + 3][i], and A[j + 4][i]

In Fortran, the elements of an array are stored in memory contiguously by

column, and the original loop iterates over rows, potentially creating at

eachaccessacachemissg E E isstored| A|D|[B|[E|C|F|

CCMP2 Instruction scheduling May 19, 2018 51/57

Loop interchanging 2/2

Solution

This transformation switches the positions of one loop that is tightly
nested within another loop.

int A[1024][1024];
for (int i = 1;1<1024; ++i)
for (int j = 1; j<1024; ++j)
AL = ALI[] * 42;

Legal if the outermost loop does not carry any data dependence
Try it by yourself in gcc -floop-interchange J

CCMP2 Instruction scheduling May 19, 2018 52 /57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)
A[j] = B[] * 42;

CCMP2 Instruction scheduling May 19, 2018 53 /57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];

for (int j = 1; j<1024; ++j)
A[j] = B[] * 42;

=] & = E DA
CCMP2 Instruction scheduling

Fetch B[i], B[i + 1], B[i + 2] and B[i + 3]

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)
A[j] = B[] * 42;

Fetch A[i], Ali + 1], A[i + 2] and A[i + 3]

CCMP2 Instruction scheduling May 19, 2018 53 /57

Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)
A[j] = B[] * 42;

Fetch A[i], Ali + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations

CCMP2 Instruction scheduling May 19, 2018 53 /57

Tabular Grouping 2/2

Solution J

Group the two tabular into one

struct twoval{int A; int B};

struct twoval R[1024];

for (int j = 1; j<1024; ++j)
R[j].A = R[j].B * 42;

Avoid a lot of caches miss!
Very hard for compiler to detect such cases

CCMP2 Instruction scheduling May 19, 2018 54 /57

Loop Blocking

Consider the code below.
int A[1024][1024]; int B[1024][1024];
for (int i = 1; i<1024; ++i)
for (int j = 1; j<1024; ++j)
Alilli] = BIil[i;

e If A and B are aligned we may encounter problems.

@ Similar problems occur when processing images: A[i][j] = B[i-1][-1] +
Bli-1][j] + B[i-1][j+1] + BI[i][}-1] + B[i][i] + B[i][j+1] + B[i-1][j+1] +
Bli+1][j] + B[i-+1][j+1] ;

@ In this latter case, padding is complicated...

CCMP2 Instruction scheduling May 19, 2018 55 /57

Loop Blocking

Solution
Try to work with data that fit in memory! J

int A[1024][1024]; int B[1024][1024];
for (int i =1;i<1024; i += B)
for (int j = 1; j<1024;] += B)
for (int i = 1; ii<min(1024, ii+B-1); i += B)
for (int jj = 1; jj< min(1024, ii+-B-1); jj += B)
Alilli] = B[LL:

CCMP2 Instruction scheduling May 19, 2018 56 /57

Summary

@ stalls in the processor can come from many reasons
» from data dependencies between instructions
» from instruction dependencies
» from cache and memory
@ modern compiler hardly try to reduce them
» by using Instruction Level Parallelism (i.e, to have a lot of independent

instructions)
> all these optimization must occur before register allocation (which is

the final step)
» When writing a compiler, you must know the target processor by heart!

@ Caches can be shared between many processors!

CCMP2 Instruction scheduling May 19, 2018 57 /57

Garbage Collection

Akim Demaille, Etienne Renault, Roland Levillain

June 4, 2019

o = £ DA
TYLA Garbage Collection

Table of contents

@ Motivations and Definitions

© Reference Counting Garbage Collection
© Mark and Sweep Garbage Collection
@ Stop and Copy Garbage Collection

© Hybrid Approaches

[m] = =

TYLA Garbage Collection

Garbage Collection 1/2

o Fisrt apparition in LISP, 1959, McCarthy

@ Garbage collection is the automatic reclamation of computer storage
(heap) at runtime

@ Automatic memory management
» New/malloc doesn't need delete/free anymore

» Necessary for fully modular programming.
Otherwise some modules are responsible for allocation while others are
responsible for deallocation.

» No more memory leaks

» Avoid dangling-pointers/references.
Reclaiming memory too soon is no more possible

TYLA Garbage Collection June 4, 2019 3/35

Garbage Collection 2/2

Quite expensive relative to explicit heap management

» Slow running programs down by (very roughly) 10 percent...

> ... But sometime cheaper or competitive

» Fair comparison is difficult since explicit deallocation affects the
structure of programs in ways that may themselves be expensive

@ Possible reduction of heap fragmentation

@ Functional and logic programming languages generally incorporate
garbage collection because their unpredictable execution patterns

D, Python, Caml, Effeil, Swift, C#, Go, Java, Haskell, LISP, Dylan,
Prolog, etc.

TYLA Garbage Collection June 4, 2019 4 /35

What is Garbage?

@ An object is called garbage at some point during execution if it will

never be used again.

@ What is garbage at the indicated points?

int main() {
Object x, y;
x = new Object ();
y new Object ();
/* Point A */
x.doSomething () ;
y.doSomething () ;
/* Point B */
y = new Object ();
/* Point C */

TYLA Garbage Collection June 4, 2019

5/ 35

Approximating Garbage

@ In general, it is undecidable whether an object is garbage

@ An object is reachable if it can still be referenced by the program.

Detect and reclaim unreachable objects

Goals J

TYLA Garbage Collection June 4, 2019 6 /35

Basics of a Garbage Collector

@ Distinguishing the live objects from the garbage ones

@ Reclaiming the garbage object’ storage

TYLA Garbage Collection June 4, 2019 7 /35

Basics of a Garbage Collector

@ Distinguishing the live objects from the garbage ones

@ Reclaiming the garbage object’ storage

We focus on built-in garbage collectors so that:
@ allocation routines performs special actions
reclaim memory
emit specific code to recognize object format
etc.
@ explicit calls to the deallocator are unnecessary

the allocator will call it on-time
the objects will be automatically destroyed

TYLA Garbage Collection June 4, 2019 7 /35

Different kind of GC

@ Incremental techniques:

> allow garbage collection to proceed piecemeal while application is
running

» my provide real-time garantees

» can be generalized into concurrent collections

@ Generationnal Schemes
» improve efficiency/locality by garbage collecting a smaller area more
often
» avoid overhead due to long time objects
» rely on pause to collect data

TYLA Garbage Collection June 4, 2019 8 /35

Table of contents

© Reference Counting Garbage Collection

o & = E DA
TYLA Garbage Collection

Reference Counting

Intuition

o & = E DA
TYLA Garbage Collection

Reference Counting

Intuition

@ Maintain for each object a counter to the references to this object

o & = E DA
TYLA Garbage Collection

Reference Counting

Intuition
@ Maintain for each object a counter to the references to this object

@ Each time a reference to the object is created, increase the pointed-to
object’s counter

TYLA Garbage Collection June 4, 2019 10 / 35

Reference Counting

Intuition
@ Maintain for each object a counter to the references to this object
@ Each time a reference to the object is created, increase the pointed-to
object’s counter

@ Each time an existing reference to an object is eliminated, the counter
is decremented

TYLA Garbage Collection June 4, 2019 10 / 35

Reference Counting

Intuition
@ Maintain for each object a counter to the references to this object
@ Each time a reference to the object is created, increase the pointed-to
object’s counter
@ Each time an existing reference to an object is eliminated, the counter
is decremented
© When the object counter equals zero, the memory can be reclaimed

v

TYLA Garbage Collection June 4, 2019 10 / 35

Deallocation

Caution
When an object is destructed:

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 /35

Deallocation

Caution
When an object is destructed:

@ examines pointer fields

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 /35

Deallocation

Caution
When an object is destructed:
@ examines pointer fields

o for any references R contained by this object, decrement reference
counter of R

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 /35

Deallocation

Caution
When an object is destructed:
@ examines pointer fields

o for any references R contained by this object, decrement reference
counter of R

@ If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 /35

Exemple

}

class LinkedList {
LinkedList next

= null;
int main() {

o & = E DA
TYLA Garbage Collection

Exemple

}

class LinkedList {
LinkedList next

= null;
int main() {

LinkedList head = new LinkedList;

O —r

o & = E DA
TYLA Garbage Collection

Exemple

class LinkedList {

LinkedList next = null; .
}

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

mid .

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {

LinkedList next = null; .
}

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; mid .

L
}

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {

LinkedList next = null; ﬂ
}
int main () {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; mid
head.next = mid;

L
}

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

}

int main() {
LinkedList head = new LinkedList;

class LinkedList {
LinkedList next = null; -head ’

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

}
int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; n
mid.next = tail;

class LinkedList {

LinkedList next = null; -head ’
head.next = mid;
mid = tail = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null; ﬂ
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid .
head.next = mid;
mid.next = tail;
mid = tail = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null; ﬂ
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid .
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

]

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null; ﬂ
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null;
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid .
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

head = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null; head

}

int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; mid
head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null;
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid @:l
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

head = null;

TYLA Garbage Collection June 4, 2019 12 /35

Exemple

class LinkedList {
LinkedList next = null;
}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; mid
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

head = null;

TYLA Garbage Collection June 4, 2019 12 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {
LinkedList next = null;
¥

int main() {

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;
} [head]—— {21

int main() {
LinkedList head = new LinkedList;

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;
} [head]—— {21

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

mid 1] |

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;
} [head]—— {21

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; .
mid 1] |

e

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;
}

int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;

e

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;
}

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; -
head.next = mid;

mid.next = tail;

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null; h
ead
) [head fF———

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; .
head.next = mid;
mid.next = tail;

tail.next = head;

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null; h
ead
) [head fF———

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; .
head.next = mid;
mid.next = tail;

tail.next = head;

tail = null;

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null; h
ead
) [head fF———

int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null; -

mid

TYLA Garbage Collection June 4, 2019 13 /35

What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null; _
ead
) | head |

int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid; mid
mid.next = tail;

tail.next = head;

tail = null;

mid = null; .
head = null;

TYLA Garbage Collection June 4, 2019 13 /35

Pros and Cons
Pros:
@ Easy to implement: perl, Firefox

@ Can be implemented on top of explicit memory management librairies
(shared _ptr)

Interleaved with running time

Small overage per unit of program execution

Transitive reclamation can be deferred by maintaining a list of freed
objects

o Real-time requierements: no halt of the system.

Necessary for application where response-time is critical
Cons:

@ A whole machine word per object

@ When the number of references to an object overflows, the counter is
set to the maximum and the memory will never be reclaimed

@ Problem with cycles

o Efficiency: cost relative to the running program

June 4,2019 14 /35

Table of contents

© Mark and Sweep Garbage Collection

o & = E DA
TYLA Garbage Collection

Analysis

@ Reference counting tries to find unreachable objects by finding objects
without incoming references

@ These references have been forgotten !

TYLA Garbage Collection June 4, 2019 16 / 35

Analysis

@ Reference counting tries to find unreachable objects by finding objects
without incoming references

@ These references have been forgotten !

We have to trace the lifetime of objects

o & = E DA
TYLA Garbage Collection

Intuition

Given knowledge of what's immediately accessible, find everything
reachable in the program

The root set is the set of memory locations in the program that are known
to be reachable

v

Graph Problem
Simply do a graph search starting at the root set:
@ Any objects reachable from the root set are reachable

@ Any objects not reachable from the root set are not reachable

TYLA Garbage Collection June 4, 2019 17 / 35

How to obtain the root set?

@ static reference variables
o references registered through librairies (JNI, for instance)

@ For each threads:

local variables

current method(s) arguments
stack

etc.

\4

vVvyy

TYLA Garbage Collection June 4, 2019 18 / 35

Mark-and-Sweep: the Algorithm

@ Marking phase: Find reachable objects

» Add the root set to a worklist
» While the worklist isn't empty

* Remove an object from the worklist
* |If it is not marked, mark it and add to the worklist all objects reachable
from that object

@ Sweeping phase: Reclaim free memory

» If that object isn't marked, reclaim its memory
> If the object is marked, unmark it

TYLA Garbage Collection June 4, 2019 19 / 35

Example

object-01

object-02

N

object-05

object-06

object-03 object-04
object-07 object-08

\/

TYLA Garbage Collection

June 4, 2019

20 / 35

Example

object-01

object-02

N

object-05

object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

June 4, 2019

20 / 35

Example

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

o
A=)
[}
a
i
o
al
o
i=H
[}
Q
i
o
¥
o
oy
[}
o
T
o
=
o
i=n
[}
a
i
o
©

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

o
i=n
[}
a
T
o
al
o
i=H
[}
Q
i
o
¥
o
oy
[}
o
T
o
=
o
i=n
[}
a
i
o
©

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

TYLA Garbage Collection

object-01 object-02 object-03 object-04
object-05 object-06 object-07 object-08

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01 object-02

S

object-05 object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01

object-02

S

object-05

object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01

object-02

S

object-05

object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01

object-02

S

object-05

object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01 object-02

S

object-05 object-06

object-03 object-04
object-07 object-08

TYLA Garbage Collection

Root Set

Working Set

June 4, 2019

20 / 35

Example

object-01 object-02

S

object-05 object-06

object-04

object-08

l |object-01| |object-04| |object—08| i Root Set
I

E : Working Set

TYLA Garbage Collection June 4, 2019 20 / 35

How to sweep?

Sweeping requires to know where are unreacheable objets !)

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Heap :

TYLA Garbage Collection June 4, 2019 21 /35

How to sweep?

Sweeping requires to know where are unreacheable objets !)

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Heap :

Just remove from the heap all non-marked objects)

TYLA Garbage Collection June 4, 2019 21 /35

Problems

@ Runtime proportional to number of allocated objects
» Sweep phase visits all objects to free them or clear marks

o Work list requires lots of memory

» Amount of space required could potentially be as large as all of memory
» Can't preallocate this space

TYLA Garbage Collection June 4, 2019 22 /35

Pros and Cons

Pros:
@ Can free cyclic references
@ 1 bits per state
@ Runtime can be proportional to the number of reachable objects
(Baker's algorihtm)
Cons:
@ Stop the world algorithm with possibly huge pauses times
@ Memory Fragmentation

@ Need to walk the whole heap

TYLA Garbage Collection June 4, 2019 23 /35

Table of contents

@ Stop and Copy Garbage Collection

o & = E DA
TYLA Garbage Collection

Analysis

@ Locality can be improved
» After garbage collection, objects are no longer closed in memory

@ Allocation speed can be improved
> After garbage collection, the free list of the allocator must be walked.

The Sweep Phase can be improved J

TYLA Garbage Collection June 4, 2019 25 /35

Exemple

Zone 1

Zone 2

@ Split memory in two pieces

o = = £ DA
TYLA Garbage Collection

Exemple

Zone 1

Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

o & = E DA
TYLA Garbage Collection

Exemple

Zone 1

Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

o & = E DA
TYLA Garbage Collection

Exemple

Zone 1

Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

o & = E DA
TYLA Garbage Collection

Exemple

Zone 1

Zone 2

m—

@ Split memory in two pieces

@ Allocate memory in the first zone

TYLA Garbage Collection

June 4, 2019

26 / 35

Exemple

Zone 1

Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

=] 5 = E DA
TYLA Garbage Collection

Exemple

Zone 1

Zone 2

@ Split memory in two pieces
@ Allocate memory in the first zone

@ When running out-of-space in the first zone: Garbage Collect!

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1

Zone 2

@ Split memory in two pieces
@ Allocate memory in the first zone
@ When running out-of-space in the first zone: Garbage Collect!

@ Explore only reachable references from the root set (here only green
object)

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1

Zone 2

Split memory in two pieces
Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1

Zone 2

Split memory in two pieces
Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1

Zone 2

Split memory in two pieces
Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1

Zone 2

@ Split memory in two pieces
@ Allocate memory in the first zone
@ When running out-of-space in the first zone: Garbage Collect!

@ Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1
Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone
@ When running out-of-space in the first zone: Garbage Collect!

e Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1
Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

@ When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

TYLA Garbage Collection June 4, 2019 26 / 35

Exemple

Zone 1
Zone 2

@ Split memory in two pieces

@ Allocate memory in the first zone

@ When running out-of-space in the first zone: Garbage Collect!

@ Explore only reachable references from the root set (here only green
object)

@ Copy objects

@ Update References & Root set

@ Clean zone 1 (Constant time)

@ Swap zone 1 and 2 (Now allocation will happen in zone 2)

@ Allocate the object that have provoqued the GC

June 4,2019 26 /35

Implementation

Partition memory into two regions: the old space and the new space.
Keep track of the next free address in the new space.

To allocate n bytes of memory:

If n bytes space exist at the free space pointer, use those bytes and
advance the pointer.

Otherwise, do a copy step. To execute a copy step:
@ For each object in the root set:

» Copy that object over to the start of the old space.
» Recursively copy over all objects reachable from that object.

@ Adjust the pointers in the old space and root set to point to new
locations.

@ Exchange the roles of the old and new spaces.

TYLA Garbage Collection June 4, 2019 27 / 35

Problems

How to adjust pointers in the copied objects correctly?

o & = E DA
TYLA Garbage Collection

Problems

How to adjust pointers in the copied objects correctly? J

@ Have each object contain a extra space for a forwarding pointer

@ First, do a complete bitwise copy of the object

© Next, set the forwarding pointer of the original object to point to the
new object

» Follow the pointer to the object it references
> Replace the pointer with the pointee’s forwarding pointer

TYLA Garbage Collection June 4, 2019 28 / 35

Pros and Cons

Pros:
@ Compact the Heap
@ Allocation only increments a pointer
@ No sweep
Cons:
@ Smaller Heap
o Copy

@ Reference adjusting

TYLA Garbage Collection June 4, 2019 29 / 35

Table of contents

© Hybrid Approaches

o & = E DA
TYLA Garbage Collection

Analysis

The best garbage collectors in use today are based on a combination of
smaller garbage collectors

Objects Die Young
Most objects have extremely short lifetimes

Optimize garbage collection to reclaim young objects rapidly while
spending less time on older objects

TYLA Garbage Collection June 4, 2019 31/35

Generational Garbage Collector

Partition memory into several generations

Objects are always allocated in the first generation.
When the first generation fills up, garbage collect it.
» Runs quickly; collects only a small region of memory.

Move objects that survive in the first generation long enough into the
next generation.

@ When no space can be found, run a full (slower) garbage collection on
all of memory.

TYLA Garbage Collection June 4, 2019 32/35

Garbage Collection in Java

@ Split the Heap in 3 zones: eden, survivors and tenured

@ New objects are allocated using a modified stop-and-copy collector in
the Eden space.

© When Eden runs out of space, the stop-and-copy collector moves its
elements to the survivor space.

@ Objects that survive long enough in the survivor space become
tenured and are moved to the tenured space.

© When memory fills up, a full garbage collection (perhaps
mark-and-sweep) is used to garbage-collect the tenured objects

TYLA Garbage Collection June 4, 2019 33 /35

Garbage Collection in C

Boehm GC
Mark and Sweep
Conservative

Consider all program variables as root set

Easy to combine with C

TYLA Garbage Collection June 4, 2019 34 /35

Bibliography

@ Uniprocessor Garbage Collection , Paul R. Wilson

o = £ DA
TYLA Garbage Collection

	Intermediate Representations
	Compilers Structure
	Intermediate Representations
	Tree

	Memory Management
	Memory Management
	Activation Blocks
	Nonlocal Variables

	Translation to Intermediate Language
	Calling Conventions
	Clever Translations
	Complex Expressions

	The Case of the Tiger Compiler
	Translation in the Tiger Compiler

	lir: Low Level Intermediate Representation

