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Instruction set architecture is the structure of a computer that a machine
language programmer (or a compiler) must understand to write a correct

(timing independent) program for that machine
IBM introducing 360 (1964)

The Instruction Set Architecture (ISA) is the part of the processor that is
visible to the programmer or compiler writer.
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What is an instruction set?

An instruction set specifies a processor functionality:
what operations are supported
what storage mechanisms are used
how to access storage
how to communicate program to processor
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Technical aspect of instruction set

1 format: length, encoding

2 operations: data type (floating or fixed point) , number and kind of
operands

3 storage:
internal: accumulator, stack, register

memory: address size, addressing modes

4 control: branch condition, support for procedures, predication
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What makes a good instruction set?

An instruction set specifies a processor functionnality:
implementability: support for a (high performances) range of
implementation
programmability: easy to express program (by Humans before 80’s,
mostly by compiler nowadays)
backward/forward compatibility: implementability &
programmability across generation
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cisc – Complex Instruction Set Chip

large number of instructions (100-250)
6, 8, 16 registers, some for pointers, others for integer computation
arithmetic in memory can be processed
two address code
many possible effects (e.g., self-incrementation)
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cisc – Pros & Cons

Pros:
Simplified compiler: translation from IR is straightforward
Smaller assembly code than risc assembly code
Fewer instructions will be fetched
Special purpose register available: stack pointer, interrupt handling ...

Cons:
Variable length instruction format
Many instruction require many clock for execution
Limiter number of general purpose register
(often) new version of cisc include the subset of instructions of the
previous version
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Motivations for something else!

Though the CISC programs could be small in length, but number of bits of
memory occupies may not be less

The complex instructions do not simplify the compilers: many clock cycles
can be wasted to find the appropriate instruction.

risc architectures were designed with the goal of executing one instruction
per clock cycle.
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risc – Reduced Instruction Set Chip

32 generic purpose registers
arithmetic only available on registers
3 address code
load and store relative to a register
(M[r + const])
only one effect or result per instruction
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risc – Pipeline 1/3

Pipelining is the overlapping the execution of several instructions in a
pipeline fashion.

A pipeline is (typically) decomposed into five stages:
1 Instruction Fetch (IF)
2 Instruction Decode (ID)
3 Execute (EX)
4 Memory Access (MA)
5 Write Back (WB)
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risc – Pipeline 2/3

inst1: IF ID EX MA WB
inst2: IF ID EX MA WB
inst3: IF ID EX MA WB
inst4: IF ID EX MA WB
inst5: IF ID EX MA WB

The slowest stage determines the speed of the whole pipeline!

Ex introduces latency
Register-Register Operation: 1 cycle
Memory Reference: 2 cycles
Multi-cycle Instructions (floating point): many cycles
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risc – Pipeline 3/3

Data hazard: When an instruction depends on the results of a previous
instruction still in the pipeline.

inst1 write in $s1 during WB
inst1 read in $s1 during ID

inst1: IF ID EX MA WB
inst2: IF ID EX MA WB

inst2 must be split, causing delays...

other dependencies can appears
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risc – Pros & Cons

Pros:
Fixed length instructions: decoding is easier
Simpler hardware: higher clock rate
Efficient Instruction pipeline
Large number of general purpose register
Overlapped register windows to speed up procedure call and return
One instruction per cycle

Cons:
Minimal number of addressing modes: only Load and Store
Relatively few instructions
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Nowadays

the classification pure-risc or pure-cisc is becoming more and more
inappropriate and may be irrelevant
modern processors use a calculated combination elements of both
design styles
decisive factor is based on a tradeoff between the required
improvement in performance and the expected added cost
Some processors that are classified as CISC while employing a number
of RISC features, such as pipelining

ARM provides the advantage of using a CISC (in terms of functionality)
and the advantage of an RISC (in terms of reduced code lengths).
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Lessons to be learned

Implementability
Driven by technology: microcode, VLSI, FPGA, pipelining, superscalar,
SIMD, SSE

Programmability
Driven by compiler technology

Sum-up
Many non technical issues influence ISA’s
Best solutions don’t always win (Intel X86)

A. Demaille, E. Renault, R. Levillain Instruction Selection 17 / 89



Intel X86 (IA32)

Introduced in 1978
8⇥ 32 bits "general" register
variable length instructions (1–15 byte)
long life to the king! 15 generations from Intel 8086 to Intel Kabylake

Intel’s trick?
Decoder translates cisc into risc micro-operations
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mips Registers and Use Convention [Larus, 1990]

Name Number Usage
zero 0 Constant 0

at 1 Reserved for assembler

v0–v1 2–3 Expression evaluation and results of a function

a0–a3 4–7 Function argument 1–4

t0–t7 8–15 Temporary (not preserved across call)

s0–s7 16–23 Saved temporary (preserved across call)

t8–t9 24–25 Temporary (not preserved across call)

k0–k1 26–27 Reserved for OS kernel

gp 28 Pointer to global area

sp 29 Stack pointer

fp 30 Frame pointer

ra 31 Return address (used by function call)
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Typical risc Instructions

The following slides are based on [Larus, 1990].
The assembler translates pseudo-instructions
(marked with † below).
In all instructions below, Src2 can be

a register

an immediate value (a 16 bit integer).

The immediate forms are included for reference.
The assembler translates the general form (e.g., add) into the
immediate form (e.g., addi) if the second argument is constant.
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Arithmetic: Addition/Subtraction

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
Put the sum of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
Put the difference of the integers from Rsrc1 and Src2 into Rdest.
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Arithmetic: Division

If an operand is negative, the remainder is unspecified by the mips architecture

and depends on the conventions of the machine on which spim is run.

div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. Leave the quotient in register lo and the

remainder in register hi.
div Rdest, Rsrc1, Src2 Divide (signed, with overflow) †

divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow) †

Put the quotient of the integers from Rsrc1 and Src2 into Rdest.
rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Likewise for the the remainder of the division.
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Arithmetic: Multiplication

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from Rsrc1 and Src2 into Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the

product in register lo and the high-word in register hi.
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Arithmetic Instructions

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from Rsrc in Rdest.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from Rsrc into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 26 / 89



Logical Operations

1 Microprocessors

2 A Typical risc: mips
Integer Arithmetics
Logical Operations
Control Flow
Loads and Stores
Floating Point Operations

3 The EPITA Tiger Compiler

4 Instruction Selection

5 Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 27 / 89



Logical Instructions

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from Rsrc into Rdest.
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Logical Instructions

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from Rsrc1 and Src2 into Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.
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Logical Instructions

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of Rsrc1 left (right) by the distance indicated by Src2 and

put the result in Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
Shift the contents of Rsrc1 left (right) by the distance indicated by Src2
(Rsrc2) and put the result in Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 30 / 89



Control Flow

1 Microprocessors

2 A Typical risc: mips
Integer Arithmetics
Logical Operations
Control Flow
Loads and Stores
Floating Point Operations

3 The EPITA Tiger Compiler

4 Instruction Selection

5 Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 31 / 89



Comparison Instructions

seq Rdest, Rsrc1, Src2 Set Equal †

Set Rdest to 1 if Rsrc1 equals Src2, otherwise to 0.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set Rdest to 1 if Rsrc1 is not equal to Src2, otherwise to 0.
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Comparison Instructions

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 � Src2, otherwise to 0.

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set Rdest to 1 if Rsrc1 > Src2, otherwise to 0.

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set Rdest to 1 if Rsrc1  Src2, otherwise to 0.

slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set Rdest to 1 if Rsrc1 < Src2 (or Imm), otherwise to 0.
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Branch and Jump Instructions

Branch instructions use a signed 16-bit offset field: jump from �2
15

to +2
15 � 1)

instructions (not bytes). The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to label.

j label Jump
Unconditionally jump to label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to label or whose address is in Rsrc. Save the address of

the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.
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Branch and Jump Instructions

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to label if coprocessor z ’s condition flag is true (false).
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

beq Rsrc1, Src2, label Branch on Equal
bne Rsrc1, Src2, label Branch on Not Equal

beqz Rsrc, label Branch on Equal Zero †

bnez Rsrc, label Branch on Not Equal Zero †
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

bgez Rsrc, label Branch on Greater Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to label if the contents of Rsrc are greater than or equal to

0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

bgtz Rsrc, label Branch on Greater Than Zero
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 are ⇤ to Src2.
ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

blez Rsrc, label Branch on Less Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to label if the contents of Rsrc are greater or equal to 0 or

less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

bltz Rsrc, label Branch on Less Than Zero
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Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by spim.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.
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Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of Rdest.
The lower bits of the register are set to 0.
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Load: Byte & Halfword

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into Rdest. The byte is sign-extended by the lb, but

not the lbu, instruction.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword

is sign-extended by the lh, but not the lhu, instruction
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Load: Word

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into Rdest.
lwcz Rdest, address Load Word Coprocessor
Load the word at address into Rdest of coprocessor z (0–3).

lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into

Rdest.
ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction

ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into Rdest.
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Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into Rdest.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into Rdest and Rdest + 1.
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Store: Byte & Halfword

sb Rsrc, address Store Byte
Store the low byte from Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from Rsrc at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection 45 / 89



Store: Word

sw Rsrc, address Store Word
Store the word from Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from Rsrc at the possibly-unaligned address.
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Store: Double Word

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in Rsrc and Rsrc + 1 at address.
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Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and

lo (e.g., mul Rdest, Rsrc1, Src2).

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents Rdest to the hi (lo) register.
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Data Movement Instructions

Coprocessors have their own register sets. These instructions move values

between these registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z ’s register CPsrc to CPU Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU

registers Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU Rsrc to coprocessor z ’s register CPdest.
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mips Floating Point Instructions

Floating point coprocessor 1 operates on single (32-bit) and double
precision (64-bit) FP numbers.
32 32-bit registers $f0–$f31.
Two FP registers to hold doubles.
FP operations only use even-numbered registers
including instructions that operate on single floats.
Values are moved one word (32-bits) at a time by lwc1, swc1, mtc1,
and mfc1 or by the l.s, l.d, s.s, and s.d pseudo-instructions.
The flag set by FP comparison operations is read by the CPU with its
bc1t and bc1f instructions.
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Floating Point: Arithmetics

Compute the ⇤ of the floating float doubles (singles) in FRsrc1 and FRsrc2 and

put it in FRdest.
add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

A. Demaille, E. Renault, R. Levillain Instruction Selection 52 / 89



Floating Point: Comparison

Compare the floating point double in FRsrc1 against the one in FRsrc2 and set

the floating point condition flag true if they are ⇤.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single
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Floating Point: Conversions

Convert between (i) single, (ii) double precision floating point number or (iii)

integer in FRsrc to FRdest.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer

A. Demaille, E. Renault, R. Levillain Instruction Selection 54 / 89



Floating Point: Moves

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from FRsrc to FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in FRdest at address.
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The EPITA Tiger Compiler

1 Microprocessors

2 A Typical risc: mips

3 The EPITA Tiger Compiler

4 Instruction Selection

5 Instruction Selection
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The EPITA Tiger Project

We aim at mips because:
mips is a nice assembly language
mips is more modern
mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)

Meaningless Indication of Processor Speed

Meaningless Information Provided by Salesmen

Meaningless Information per Second

Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator
spim has a cool modern gui, xspim!
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PC    = 00000000  EPC  = 00000000  Cause  = 0000000  BadVaddr = 00000000
Status= 00000000  HI   = 00000000  LO     = 0000000

R0 (r0) = 00000000  R8  (t0) = 00000000  R16 (s0) = 0000000  R24 (t8) = 00000000
R1 (at) = 00000000  R9  (t1) = 00000000  R17 (s1) = 0000000  R25 (s9) = 00000000
R2 (v0) = 00000000  R10 (t2) = 00000000  R18 (s2) = 0000000  R26 (k0) = 00000000
R3 (v1) = 00000000  R11 (t3) = 00000000  R19 (s3) = 0000000  R27 (k1) = 00000000
R4 (a0) = 00000000  R12 (t4) = 00000000  R20 (s4) = 0000000  R28 (gp) = 00000000
R5 (a1) = 00000000  R13 (t5) = 00000000  R21 (s5) = 0000000  R29 (gp) = 00000000
R6 (a2) = 00000000  R14 (t6) = 00000000  R22 (s6) = 0000000  R30 (s8) = 00000000
R7 (a3) = 00000000  R15 (t7) = 00000000  R23 (s7) = 0000000  R31 (ra) = 00000000

FP0     = 0.000000  FP8      = 0.000000  FP16     = 0.00000  FP24     = 0.000000

FP6     = 0.000000  FP14     = 0.000000  FP22     = 0.00000  FP30     = 0.000000
FP4     = 0.000000  FP12     = 0.000000  FP20     = 0.00000  FP28     = 0.000000
FP2     = 0.000000  FP10     = 0.000000  FP18     = 0.00000  FP26     = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29)  []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004]  0x74706563  0x206e6f69  0x636f2000
[0x10010010]  0x72727563  0x61206465  0x6920646e  0x726f6e67
[0x10010020]  0x000a6465  0x495b2020  0x7265746e  0x74707572
[0x10010030]  0x0000205d  0x20200000  0x616e555b  0x6e67696c
[0x10010040]  0x61206465  0x65726464  0x69207373  0x6e69206e
[0x10010050]  0x642f7473  0x20617461  0x63746566  0x00205d68
[0x10010060]  0x555b2020  0x696c616e  0x64656e67  0x64646120
[0x10010070]  0x73736572  0x206e6920  0x726f7473  0x00205d65
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A Sample: fact

/* Define a recursive function. */
let

/* Calculate n! */
function fact (n : int) : int =

if n = 0
then 1
else n * fact (n - 1)

in
print_int (fact (10));
print ("\n")

end
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# Routine: fact

l0: sw $fp, -8 ($sp)

move $fp, $sp

sub $sp, $sp, 16

sw $ra, -12 ($fp)

sw $a0, ($fp)

sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)

beq $t0, 0, l1

l2: lw $a0, ($fp)

lw $t0, -4 ($fp)

sub $a1, $t0, 1

jal l0

lw $t0, -4 ($fp)

mul $t0, $t0, $v0

l3: move $v0, $t0

j l6

l1: li $t0, 1

j l3

l6: lw $ra, -12 ($fp)

move $sp, $fp

lw $fp, -8 ($fp)

jr $ra

.data
l4:

.word 1

.asciiz "\n"
.text
# Routine: Main
t_main: sw $fp, ($sp)

move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l7: move $a0, $fp
li $a1, 10
jal l0
move $a0, $v0
jal print_int
la $a0, l4
jal print

l8: lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra
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Nolimips (formerly Mipsy)

Another mips emulator
Interactive loop
Unlimited number of $x42 registers!
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# Routine: fact

l0: sw $a0, ($fp)

sw $a1, -4 ($fp)

move $x11, $s0

move $x12, $s1

move $x13, $s2

move $x14, $s3

move $x15, $s4

move $x16, $s5

move $x17, $s6

move $x18, $s7

l5: lw $x5, -4 ($fp)

beq $x5, 0, l1

l2: lw $x6, ($fp)

move $a0, $x6

lw $x8, -4 ($fp)

sub $x7, $x8, 1

move $a1, $x7

jal l0

move $x3, $v0

lw $x10, -4 ($fp)

mul $x9, $x10, $x3

move $x0, $x9

l3: move $v0, $x0

j l6

l1: li $x0, 1

j l3

l6: move $s0, $x11

move $s1, $x12

move $s2, $x13

move $s3, $x14

move $s4, $x15

move $s5, $x16

move $s6, $x17

move $s7, $x18

# Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra
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Nolimips (formerly Mipsy)

Another mips emulator
Interactive loop
Unlimited number of $x42 registers!
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# Routine: fact

l0: sw $a0, ($fp)

sw $a1, -4 ($fp)

move $x11, $s0

move $x12, $s1

move $x13, $s2

move $x14, $s3

move $x15, $s4

move $x16, $s5

move $x17, $s6

move $x18, $s7

l5: lw $x5, -4 ($fp)

beq $x5, 0, l1

l2: lw $x6, ($fp)

move $a0, $x6

lw $x8, -4 ($fp)

sub $x7, $x8, 1

move $a1, $x7

jal l0

move $x3, $v0

lw $x10, -4 ($fp)

mul $x9, $x10, $x3

move $x0, $x9

l3: move $v0, $x0

j l6

l1: li $x0, 1

j l3

l6: move $s0, $x11

move $s1, $x12

move $s2, $x13

move $s3, $x14

move $s4, $x15

move $s5, $x16

move $s6, $x17

move $s7, $x18

# Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra
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Translating a Simple Instruction

How would you translate
a[i] := x

where x is frame resident, and
i is not? [Appel, 1998]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Simple Instruction: Translation 1

load t17 <- M[fp + a]
addi t18 <- r0 + 4
mul t19 <- ti * t18
add t20 <- t17 + t19
load t21 <- M[fp + x]
store M[t20 + 0] <- t21

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Tree Patterns

Translation from Tree to Assembly corresponds to parsing a tree.
Looking for a covering of the tree, using tiles.
The set of tiles corresponds to the instruction set.

+ - * /
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Tiles

Missing nodes are plugs for temporaries: tiles read from temps, and create
temps.

+

const

+

const

const -

const

Some architectures rely on a special register to produce 0.
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Tiles: Loading load ri  M[rj + c]

mem

+

const

mem

+

const

mem

const

mem
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Tiles: Storing store M[rj + c] ri

move

mem

+

const

move

mem

+

const

move

mem

const

move

mem
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Simple Instruction: Translation 2

load t17 <- M[fp + a]
addi t18 <- r0 + 4
mul t19 <- ti * t18
add t20 <- t17 + t19
addi t21 <- fp + x
movem M[t20] <- M[t21]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Simple Instruction: Translation 3

addi t17 <- r0 + a
add t18 <- fp + t17
load t19 <- M[t18 + 0]
addi t20 <- r0 + 4
mul t21 <- ti * t20
add t22 <- t19 + t21
addi t23 <- r0 + x
add t24 <- fp + t23
load t25 <- M[t24 + 0]
store M[t22 + 0] <- t25

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Translating a Simple Instruction

There is always a solution
(provided the instruction set is reasonable)
there can be several solutions
given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),

some are globally better, optimum coverings.

Nowadays this approach is too naive:
cpus are really layers of units that work in parallel.
Costs are therefore interrelated.
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Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.
Top-down strategy.
Cover the current node with the largest tile.
Repeat on subtrees.
Generate instructions in reverse-order after tile placement.

Dynamic Programming Find an optimum tiling.
Bottom-up strategy.
Assign cost to each node.
Cost = cost of selected tile + cost of subtrees.
Select a tile with minimal cost and recurse upward.
Implemented by code generator generators
(Twig, Burg, iBurg, MonoBURG, . . . ).
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Tree Matching

The basic operation is the pattern matching.
Not all the languages stand equal before pattern matching. . .
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... in Stratego

Select-swri :

MOVE(MEM(BINOP(PLUS, e1, CONST(n))), e2) !
SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-ri(r2, r1, n)))

where <new-atemp> e1 ) r1; <new-atemp> e2 ) r2

Select-swr :

MOVE(MEM(e1), e2) ! SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-r(r2, r1)))

where <new-atemp> e1 ) r1; <new-atemp> e2 ) r2

Select-nop :

MOVE(TEMP(r), TEMP(r)) ! NUL

Select-nop :

MOVE(REG(r), REG(r)) ! NUL

Select-mover :

MOVE(TEMP(r), TEMP(t)) ! move(TEMP(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :

MOVE(TEMP(r), REG(t)) ! move(TEMP(r), REG(t)) where <not(eq)> (r, t)

Select-mover :

MOVE(REG(r), TEMP(t)) ! move(REG(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :

MOVE(REG(r), REG(t)) ! move(REG(r), REG(t)) where <not(eq)> (r, t)
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... in Haskell: Ir.hs [Anisko, 2003]

module Ir (Stm (Move, Sxp, Jump, CJump, Seq, Label,
LabelEnd, Literal),

...)
where

data Stm a =
Move { ma :: a, lval :: Exp a, rval :: Exp a }

| Sxp a (Exp a)
| Jump a (Exp a)
| CJump { cja :: a,

rop :: Relop, cleft :: Exp a, cright :: Exp a,
iftrue :: Exp a, iffalse :: Exp a }

| Seq a [Stm a]
| Label { la :: a,

name :: String, size :: Int }
| LabelEnd a
| Literal { lita :: a,

litname :: String, litcontent :: [Int] }
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... in Haskell Eval.hs [Anisko, 2003]

module Eval (evalStm, ...)
where
import Ir
import Monad (Mnd, rfetch, rstore, rpush, rpop, ...)
import Result (Res (IntRes, UnitRes))
import Profile (profileExp, profileStm)

evalStm :: Stm Loc -> Mnd ()
evalStm stm@(Move loc (Temp _ t) e) =

do (IntRes r) <- evalExp e
verbose loc ["move", "(", "temp", t, ")", show r]
profileStm stm
rstore t r

evalStm stm@(Move loc (Mem _ e) f) =
do (IntRes r) <- evalExp e

(IntRes s) <- evalExp f
verbose loc ["move", "(", "mem", show r, ")", show s]
profileStm stm
mstore r s
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... in Haskell Low.hs [Anisko, 2003]

module Low (lowExp, lowStms)
where import ...

lowStms :: Int -> [Stm Ann] -> Mnd Bool
lowStms _ [] = return True

lowStms level
((CJump _ _ e f _ (Name _ s)) : (Label _ s’ _) : stms)
| s == s’ =

do a <- lowExp (level + 1) e
b <- lowExp (level + 1) f
c <- lowStms level stms
return $ a && b && c

lowStms level (CJump l _ e f _ _ : stms) =
do awarn l ["invalid cjump"]

lowExp (level + 1) e
lowExp (level + 1) f
lowStms level stms
return False
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... in Haskell High.hs [Anisko, 2003]

module High (highExp, highStms)
where import ...

highStms :: Int -> [Stm Ann] -> Mnd Bool
highStms level ss =

do a <- sequence $ map (highStm level) ss
return (and a)

highStm :: Int -> Stm Ann -> Mnd Bool
highStm level (Move l dest src) =

do a <- highExp (level + 1) dest
a’ <- case dest of

Temp _ _ -> return True
Mem _ _ -> return True
_ -> do awarn (annExp dest)

["invalid move destination:",
show dest]

return False
b <- highExp (level + 1) src
return $ a && a’ && b

A. Demaille, E. Renault, R. Levillain Instruction Selection 82 / 89



... in C++
52 lines matching "switch\\|case\\|default\\|//" in buffer codegen.cc.
28:switch (stm.kind_get ())
30: case Tree::move_kind :
36: switch (dst->kind_get ())
38: case Tree::mem_kind : // dst
41: // MOVE (MEM (...), ...)
42: switch (src.kind_get ())
44: // MOVE (MEM (...), MEM (...))
45: case Tree::mem_kind : // src
55: default : // src
57: // MOVE (MEM (...) , e1)
59: switch (addr->kind_get ())
61: case Tree::binop_kind : // addr
63: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
69: switch (binop.oper_get ())
71: case Binop::minus:
73: case Binop::plus:
74: // MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)
77: // MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)
87: default:
88: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
93: case Tree::const_kind : // addr
95: // MOVE (MEM (CONST (i), e2)

101: default : // addr
102: // MOVE (MEM (e1), e2)
112: case Tree::temp_kind : // dst
115: switch (src.kind_get ())
117: case Tree::call_kind :
119: // MOVE (TEMP (i), CALL (f, args))
124: // MOVE (TEMP (i), MEM (...))
125: case Tree::mem_kind :
128: switch (src_mem.exp_get ()->kind_get ())
130: // MOVE (TEMP (i), MEM (BINOP (..., ..., ...)))
131: case Tree::binop_kind :
138: switch (binop.oper_get ())
140: case Binop::minus:
142: case Binop::plus:
143: // MOVE (e1, MEM (BINOP (+/-, e2, CONST (i))))
146: // MOVE (e1, MEM (BINOP (+/-, CONST (i), e2)))
156: default:
157: // MOVE (e1, MEM (BINOP (..., ..., ...)))
162: // MOVE (TEMP (i), MEM (CONST (i)))
163: case Tree::const_kind :
170: // MOVE (TEMP (i), MEM (e1))
171: default :
179: default :
180: // MOVE (TEMP (i), e2)
185: default :
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... in C++
case Node::move_kind :

{

DOWN_CAST (Move, move, stm);

const Exp* dst = move.dst_get (); const Exp* src = move.src_get ();

switch (dst->kind_get ()) {

case Node::mem_kind : { // dst

DOWN_CAST (Mem, mem, *dst);

// MOVE (MEM (...), ...)

switch (src.kind_get ()) {

// MOVE (MEM (...), MEM (...))

case Node::mem_kind : // src

...

default : { // src

// MOVE (MEM (...) , e1)

const Exp* addr = dst.exp_get ();

switch (addr->kind_get ()) {

case Node::binop_kind : { // addr

// MOVE (MEM (BINOP (..., ..., ...)) , e1)

DOWN_CAST (Binop, binop, *addr);

const Exp* binop_left = binop.left_get ();

const Exp* binop_right = binop.right_get ();

short sign = 1;

switch (binop.oper_get ()) {

case Binop::minus: sign = -1;

case Binop::plus:

// MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)

if (binop_right->kind_get () == Node::const_kind)

std::swap (binop_left, binop_right);

// MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)

if (binop_left->kind_get () == Node::const_kind) {

DOWN_CAST (Const, const_left, *binop_left);

emit (_assembly->store_build (munchExp (src),

munchExp (* binop_right),

sign * const_left.value_get ()));

}

break;

default:

// MOVE (MEM (BINOP (..., ..., ...)) , e1)

emit (_assembly->store_build (munchExp (src), munchBinop (binop)));

break;

...
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... in C++

Break down long switches into smaller functions.
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Twig, Burg, iBurg [Fraser et al., 1992]

%{ /* ... */
enum { ADDI=309, ADDRLP=295, ASGNI=53, CNSTI=21, CVCI=85,
I0I=661, INDIRC=67 };

/* ... */
%}
%term ADDI=309 ADDRLP=295 ASGNI=53
%term CNSTI=21 CVCI=85 I0I=661 INDIRC=67
%%
/* ... */
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Twig, Burg, iBurg [Fraser et al., 1992]

/* ... */
%%
stmt: ASGNI(disp,reg) = 4 (1);
stmt: reg = 5;
reg: ADDI(reg,rc) = 6 (1);
reg: CVCI(INDIRC(disp)) = 7 (1);
reg: I0I = 8;
reg: disp = 9 (1);
disp: ADDI(reg,con) = 10;
disp: ADDRLP = 11;
rc: con = 12;
rc: reg = 13;
con: CNSTI = 14;
con: I0I = 15;
%%
/* ... */
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MonoBURG

binop: Binop(lhs : exp, rhs : Const)
{

auto binop = tree.cast<Binop>();
auto cst = rhs.cast<Const>();
EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),
cst->value_get(), tree->asm_get()));

}

binop: Binop(lhs : exp, rhs : exp)
{

auto binop = tree.cast<Binop>();
EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),
rhs->asm_get(), tree->asm_get()));

}
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Control Flow Graph [Appel, 1998]

a := 0
L1: b := a + 1

c := c + b
a := b * 2
if a < N goto L1
return c
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Control Flow Graph [Appel, 1998]

a := 0
L1: b := a + 1
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7.tig

1 + 2 * 3
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7’s Pre-Assembly

tc_main:
# Allocate frame

move $x13, $ra
move $x5, $s0
move $x6, $s1
move $x7, $s2
move $x8, $s3
move $x9, $s4
move $x10, $s5
move $x11, $s6
move $x12, $s7

l0:
li $x1, 1
li $x2, 2
mul $x3, $x2, 3
add $x4, $x1, $x3

l1:
move $s0, $x5
move $s1, $x6
move $s2, $x7
move $s3, $x8
move $s4, $x9
move $s5, $x10
move $s6, $x11
move $s7, $x12
move $ra, $x13

# Deallocate frame
jr $ra



7’s Flowgraph
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7000.tig

1 | 2 & 3
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7000’s Pre-Assembly

tc_main:
# Allocate frame

move $x6, $ra
l8:

li $x3, 1
bne $x3, 0, l5

l6:
li $x4, 2
bne $x4, 0, l0

l1:
li $x0, 0

l2:
l7:

j l9

l0:
li $x1, 1
li $x5, 3
bne $x5, 0, l3

l4:
li $x1, 0

l3:
move $x0, $x1
j l2

l5:
j l7

l9:
move $ra, $x6

# Deallocate frame
jr $ra



7000’s Flowgraph
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Liveness

a := 0

b := a + 1

c := c + b

a := b * 2

a < N

return c
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Dataflow Equations for Liveness Analysis

in[n] = use[n] [ (out[n] \ def[n])

out[n] =
[

s2succ[n]

in[s]
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Liveness Calculation

(Forward)

1st step 2nd step 3rd step 4th step

use def in out in out in out in out
1 a

a a ac

2 a b

a a bc ac bc ac bc

3 bc c

bc bc b bc b bc c

4 b a

b b a b a b ac

5 a

a a a ac ac ac ac ac

6 c

c c c c

5th step 6th step 7th step

use def in out in out in out
1 a

c ac c ac c ac

2 a b

ac bc ac bc ac bc

3 bc c

bc b bc bc bc bc

4 b a

bc ac bc ac bc ac

5 a

ac ac ac ac ac ac

6 c

c c c

in[n] = use[n] [ (out[n] \ def[n])

out[n] =
[

s2succ[n]
in[s]

Calculation done following forward control-flow edges.
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Liveness Calculation (Forward)
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Liveness Calculation (Backward)

1st step 2nd step 3rd step

use def out in out in out in
6 c

c c c

5 a

c ac ac ac ac ac

4 b a

ac bc ac bc ac bc

3 bc c

bc bc bc bc bc bc

2 a b

bc ac bc ac bc ac

1 a

ac c ac c ac c

in[n] = use[n] [ (out[n] \ def[n])

out[n] =
[

s2succ[n]
in[s]

Calculation done following reverse control-flow edges.
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Liveness Calculation (Backward)

1st step 2nd step 3rd step
use def out in out in out in

6 c c c c
5 a c ac ac ac ac ac
4 b a ac bc ac bc ac bc
3 bc c bc bc bc bc bc bc
2 a b bc ac bc ac bc ac
1 a ac c ac c ac c

in[n] = use[n] [ (out[n] \ def[n])

out[n] =
[

s2succ[n]
in[s]

Calculation done following reverse control-flow edges.

A. Demaille, E. Renault, R. Levillain Liveness Analysis 15 / 39



Control Flow Graph [Appel, 1998]

a := 0
L1: b := a + 1

c := c + b
a := b * 2
if a < N goto L1
return c

a := 0

b := a + 1

c := c + b

a := b * 2

a < N

return c

A. Demaille, E. Renault, R. Levillain Liveness Analysis 16 / 39



Conservative Approximation

Suppose d a variable not used in the fragment of code

Another Solution

use def out in
1 a

cd acd

2 a b

acd bcd

3 bc c

bcd bcd

4 b a

bcd acd

5 a

acd acd

6 c

c
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Conservative Approximation

Suppose d a variable not used in the fragment of code

Another Solution

use def out in
1 a cd acd

2 a b acd bcd

3 bc c bcd bcd

4 b a bcd acd

5 a acd acd
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Conservative Approximation

a := b * b

c := a + b

c >= b

return a return c
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ors.tig

1 | 2
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ors’ Flowgraph
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ors’ Liveness Graph
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Various Dataflow Analysis

1 Control Flow Graph

2 Liveness

3 Various Dataflow Analysis

4 Interference Graph
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Optimizing Compiler

First step toward optimizing compilers

How definitions and uses are related to each other

What value a variable may have at a given point

Constant propagation

Common sub-expression elimination

Copy propagation

Dead Code Elimination
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Constant propagation

An ambiguous definition is a statement that might or not assign a

temporary t. For instance, a call may sometimes modifies t and sometimes

not.

We don’t have this problem for tiger due to excaping variables.

Don’t loose optimisation! Consider every definiton as ambiguous

We need to define the set of definitions that reach the begining and the

end of each node.

gen: when enter this statement, we know that we will reach the end of

it

kills: any statement that invalidates a gen
begin[n]: which statements can reach the begining of statement n

end[n]: which statements can reach the end of statement n
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Reaching definition [Appel, 1998]

a := 5
c := 1

L1: if c > a goto L2
c := c + c
goto L1

L2: a := c - a
c := 0

A. Demaille, E. Renault, R. Levillain Liveness Analysis 25 / 39



1st step 2nd step 3rd step

gen kills begin end begin end begin end
1 1 6

1 1 1

2 2 4,7

1 1,2 1 1,2 1 1,2

3

1,2 1,2 1,2,4 1,2,4 1,2,4 1,2,4

4 4 2,7

1,2 1,4 1,2,4 1,4 1,2,4 1,4

5

1,4 1,4 1,4 1,4 1,4 1,4

6 6 1

1,2 2,6 1,2,4 2,4,6 1,2,4 2,4,6

7 7 2,4

2,6 6,7 2,4,6 6,7 2,4,6 6,7

end[n] = gen[n] [ (begin[n] \ kills[n])

begin[n] =
[

p2pred[n]

end[p]
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1st step 2nd step
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Constant Propagation

If we have a statement d1 : t := c , with c constant, and another

statement d2 that uses t.

t is constant

if d1 reaches d2 and no other definition of t reaches d2

then we can rewrite d2

In the previous example, only one definition of a reaches statement 3 so we

can replace c > a by c > 5.
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Copy Propagation

If we have a statement d1 : t := z , with z variable, and another

statement d2 that uses t.

t is constant

if d1 reaches d2 and no other definition of t reaches d2 and the is no

definition of z in all pathes between d1 and d2

then we can rewrite d2

Good register allocator will automatically detects some such cases.
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Optimizing compiler

The removal of dead statements (or other optimizations) might introduce

new dead statements.

To avoid the need for repeated global calculation, several strategies exist:

Cutoff: perform no more than k round

Cascading analysis: predict the cascade of effects of an optimization.

Value numbering is a typical case of cascading analysis

Incremental dataflow analysis: patch the dataflow after applying an

optimization.
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Interference Graph

1 Control Flow Graph

2 Liveness

3 Various Dataflow Analysis

4 Interference Graph
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Interference Graph

a := 0

b := a + 1

c := c + b

a := b * 2

a < N

return c

a

c

b a

c

b
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Register Allocation

a := 0
L1: b := a + 1

c := c + b
a := b * 2
if a < N goto L1
return c

a

c

b r1 := 0
L1: r1 := r1 + 1

r2 := r2 + r1
r1 := r1 * 2
if r1 < N goto L1
return r2
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7’s Interference Graph
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7000’s Interference Graph
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ors’ Interference Graph
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fact.tig

let function fact (n : int) : int =
if n = 0 then

1
else

n * fact (n - 1)
in

fact (12)
end
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fact’s Liveness Graph
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fact’s Interference Graph
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Register Allocation

a := 0
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Register Allocation

a := 0
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c := c + b
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if a < N goto L1
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a

c
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Coloring by Simplification

1 Interference Graph

2 Coloring by Simplification

Spilling

Coalescing

Precolored Nodes

Implementation

3 Alternatives to Graph Coloring
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Interference Graph [Appel, 1998]

Four registers: r1, r2, r3, r4.
live in: k j

g := [j + 12]
h := k - 1
f := g * h
e := [j + 8]
m := [j + 16]
b := [f]
c := e + 8
d := c
k := m + 4
j := b

live out: d k j

m

c

d

b

e

j

k

fh

g
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Interference Graph: Simplify 0

g
m

c

d

b

e

j

k

fh

g
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Interference Graph: Simplify 1

h
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Interference Graph: Simplify 2

k
h
g

m

c

d

b
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Interference Graph: Simplify 3

d
k
h
g

m

c

d
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j
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Interference Graph: Simplify 4
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d
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Interference Graph: Simplify 5

e
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d
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h
g
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Interference Graph: Simplify 6

f
e
j
d
k
h
g

m

c

d

b
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Interference Graph: Simplify 7

b
f
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d
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g
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Interference Graph: Simplify 8

c
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h
g

m
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Interference Graph: Simplify 9
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Interference Graph: Color 9

m
c
b
f
e
j
d
k
h
g

m:1

c

d

b

e

j

k

fh

g
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Interference Graph: Color 8
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Interference Graph: Color 7
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Interference Graph: Color 6
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Interference Graph: Color 5

e
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Interference Graph: Color 4
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Interference Graph: Color 3

d
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Interference Graph: Color 2

k
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Interference Graph: Color 1

h
g
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Interference Graph: Color 0

g
m:1

c:3

d:4

b:2

e:4

j:3

k:1

f:2h:2

g:4
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Result

live in: k j
g := [j + 12]
h := k - 1
f := g * h
e := [j + 8]
m := [j + 16]
b := [f]
c := e + 8
d := c
k := m + 4
j := b

live out: d k j

live in: r1 r3
r4 := [r3 + 12]
r2 := r1 - 1
r2 := r4 * r2
r4 := [r3 + 8]
r1 := [r3 + 16]
r2 := [r2]
r3 := r4 + 8
r4 := r3
r1 := r1 + 4
r3 := r2

live out: r4 r1 r3
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Simple Register Allocation

Build Simplify Select

build the conflict graph from the program

simplify the nodes with insignificant degree

select (or color) while rebuilding the graph.

Based on:

A.B. Kempe. On the Geographical problem of the four colors, Am.

J. Math 2, 193–200, 1879.

[Appel, 1998, Matz, 2003]
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Yes, but What Color? [Matz, 2003]

Usually, first-fit (registers are ordered).

Trying caller save first helps.

Biased Coloring. [Briggs, 1992]

Use a color already unavailable to our neighbors.
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Spilling

1 Interference Graph

2 Coloring by Simplification

Spilling

Coalescing

Precolored Nodes

Implementation

3 Alternatives to Graph Coloring
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Spilling

A map can always be colored with 4 colors. . .

But for graph coloring, there is no reason for:

this simple heuristics to always find a solution,

a solution to always exist. . .
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Spilling

Not enough registers

t1 := t1 + t2

So use the stack

[sp + 4] := [sp + 4] + [sp + 8]

But use temporaries to do so!

t12 := [sp + 4]
t13 := [sp + 8]
t12 := t12 + t13
[sp + 4] := t12

Why should it solve the problem?
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Register Allocation with Spills

Build Simplify
Potential

spill
Select

Actual

spill

Rebuild the graph if there were any actual spills

spill when one cannot simplify, the (uses of the) temporary must

be rewritten using the stack.

rebuild but then, the conflict graph is to be rewritten

[Appel, 1998, Matz, 2003]
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Yes, But Who Should be Spilled?

The simplification order does not matter

The spilling order matters

Spilling decreases the degree of the neighbors

. . . hence it enables additional simplifications

. . . so “first spilled, last served”

. . . therefore: spill cheap temporaries

few def/uses
pay attention to loops
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Optimistic Coloring

We miss many opportunities to avoid the stack

a

b c

d

Handle spills as if they were simplified (potential spills)

then try to color them

There might not be actual spills
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Coalescing

1 Interference Graph

2 Coloring by Simplification

Spilling

Coalescing

Precolored Nodes

Implementation

3 Alternatives to Graph Coloring
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Coalescing

Some low-level form of copy propagation

While building traces we tried to remove jumps
While allocating registers, we try to remove moves
live-in: t2
t1 := ...
t2 := t1 + t2
t3 := t2
t4 := t1 + t3
t2 := t3 + t4
t1 := t2 - t4
live-out: t1
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Coalescing Improves the Coloralibility

t1

t2

t3

t4

t1 and t4 have one neighbor less!
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Yes, But Coalesce Who?

Conservative Coalescing: don’t make it harder.

Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.

George every neighbor of a is

of insignificant degree
already interfering with b

George’s criterion is well suited for real registers
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Interference Graph [Appel, 1998]

Four registers: r1, r2, r3, r4.
live in: k j

g := [j + 12]
h := k - 1
f := g * h
e := [j + 8]
m := [j + 16]
b := [f]
c := e + 8
d := c
k := m + 4
j := b

live out: d k j

m

c

d

b

e

j

k

fh

g
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Interference Graph: Simplify 0
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Interference Graph: Simplify 1
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Interference Graph: Simplify 2
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Interference Graph: Simplify 3
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Interference Graph: Simplify 4

j&b
c&d
k
h
g

m

c&d

j&b

k f

e

h

g

A. Demaille, E. Renault, R. Levillain Register Allocation 46 / 98



Interference Graph: Simplify 5
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Interference Graph: Simplify 6
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Interference Graph: Simplify 7
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Interference Graph: Simplify 8
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Interference Graph: Simplify 9

e
m
f

j&b
c&d
j&b
c&d
k
h
g

m

c&d

j&b

k f

e

h

g

A. Demaille, E. Renault, R. Levillain Register Allocation 51 / 98



Interference Graph: Simplify 9
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Interference Graph: Simplify 8
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Interference Graph: Simplify 7
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Interference Graph: Simplify 6
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Interference Graph: Simplify 5
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Interference Graph: Simplify 4
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Interference Graph: Simplify 3
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Interference Graph: Simplify 2
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Interference Graph: Simplify 1
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Interference Graph: Simplify 0
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Interference Graph: Result

live in: k j
g := [j + 12]
h := k - 1
f := g * h
e := [j + 8]
m := [j + 16]
b := [f]
c := e + 8
d := c
k := m + 4
j := b

live out: d k j

live in: r2 r4
r1 := [r4 + 12]
r2 := r2 - 1
r3 := r1 * r2
r1 := [r4 + 8]
r2 := [r4 + 16]
r4 := [r3]
r1 := r1 + 8

# r1 := r1
r2 := r2 + 4

# r4 := r4
live out: r1 r2 r4
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Precolored Nodes

1 Interference Graph

2 Coloring by Simplification

Spilling

Coalescing

Precolored Nodes

Implementation

3 Alternatives to Graph Coloring
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Hard Registers

Some nodes are precolored: the real registers

the stack pointer ($sp)
the frame pointer ($fp)
the argument registers ($a0, $a1, etc.)
the return value ($v0, $v1)
the return address ($ra)
etc.

They all interfere with each other

They cannot be simplified (infinite degree)
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Callee & Caller Save Registers

It just rocks!

Caller Save Def’d by calls.
Callee Save Def’d at entry, used at exit of functions.

Register pressure will push temporaries live across calls into callee save.
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Conflicts

Minimize the conflicts (“pressure”) with hard regs. Source and sink.

# Routine: fact
l0: # def $s0, $s1...

move $x11, $s0 # def: $x11 use: $s0
move $x12, $s1 # def: $x12 use: $s1
...

l6:
move $s0, $x11 # def: $s0 use: $x11
move $s1, $x12 # def: $s1 use: $x12
...

# use: $fp, $ra, $sp,
# ... $v0, $zero
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Example [Appel, 1998]

int
f (int a, int b)
{

int d = 0;
int e = a;
do
{

d += b;
--e;

} while (e > 0);
return d;

}

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0 goto loop
r1 := d
r3 := c
return

# liveout: r1, r3
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Example

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0 goto loop
r1 := d
r3 := c
return

# liveout: r1, r3

r1

r2

a

c

d

r3

b

e
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Interference Graph: Simplify 0
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Interference Graph: Simplify 1
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Interference Graph: Simplify 2
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Interference Graph: Simplify 3
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Interference Graph: Simplify 4
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Interference Graph: Simplify 4
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Interference Graph: Simplify 3
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Interference Graph: Simplify 2
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Interference Graph: Simplify 1
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Interference Graph: Simplify 0
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Spilling

enter:
c := r3
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0 goto loop
r1 := d
r3 := c
return

# liveout: r1, r3

enter:
c1 := r3
[sp+8] := c1
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0

goto loop
r1 := d
c2 := [sp+8]
r3 := c2
return

# liveout: r1, r3
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Example

enter:
c1 := r3
[sp+8] := c1
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0

goto loop
r1 := d
c2 := [sp+8]
r3 := c2
return

# liveout: r1, r3

r1

r2

a

d

r3

b

e

c1 c2
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Interference Graph: Simplify 0
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Interference Graph: Simplify 1
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Interference Graph: Simplify 2
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Interference Graph: Simplify 3
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Interference Graph: Simplify 4
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Interference Graph: Simplify 5
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Interference Graph: Simplify 5
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Interference Graph: Simplify 4
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Interference Graph: Simplify 3
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Interference Graph: Simplify 2

a&e
c1&r3&c2
c1&r3

r1:1

r2:2

a:1

d:3

b:2

c1&r3&c2

e:1

A. Demaille, E. Renault, R. Levillain Register Allocation 90 / 98



Interference Graph: Simplify 1
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Interference Graph: Simplify 0
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Result

enter:
c1 := r3
[sp+8] := c1
a := r1
b := r2
d := 0
e := a

loop:
d := d + b
e := e - 1
if e > 0

goto loop
r1 := d
c2 := [sp+8]
r3 := c2
return

# liveout: r1, r3

enter:
r3 := r3
[sp+8] := r3
r1 := r1
r2 := r2
r3 := 0
r1 := r1

loop:
r3 := r3 + r2
r1 := r1 - 1
if r1 > 0

goto loop
r1 := r3
r3 := [sp+8]
r3 := r3
return

# liveout: r1, r3

enter:

[sp+8] := r3

r3 := 0

loop:
r3 := r3 + r2
r1 := r1 - 1
if r1 > 0

goto loop
r1 := r3
r3 := [sp+8]

return
# liveout: r1, r3
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Implementation

1 Interference Graph

2 Coloring by Simplification

Spilling

Coalescing

Precolored Nodes

Implementation

3 Alternatives to Graph Coloring
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Implementation

Naive implementation is quadratic

Lower with heavy use of worklists

Queries on the conflict graph

Iterate over neighbors, hence adjacency list
Existence of an edge between two nodes, hence bit matrix.

Use both!

For more information, see [Appel, 1998].
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Alternatives to Graph Coloring

1 Interference Graph

2 Coloring by Simplification

3 Alternatives to Graph Coloring
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Register Allocation for Trees

Can be done during instruction selection with maximal munch

function SimpleAlloc (t)
for each nontrivial tile u child of t

SimpleAlloc (u)
for each nontrivial tile u child of t

n := n - 1
n := n + 1
assign rn to (the root of) t

[Appel, 1998]
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Dependencies analysis 1/2

Two instructions are independent they can be permuted without altering
the consistency

The 3 following instructions are independent
inst1 : a  42
inst2 : b  51
inst3 : c  0

inst1, inst2 and inst3 can then be reordered
inst1 : a  42 inst1 : a  42 inst3 : c  0
inst2 : b  51 inst3 : c  0 inst1 : a  42
inst3 : c  0 inst2 : b  51 inst2 : b  51

inst1 : c  0 inst1 : b  51 inst3 : b  51
inst2 : b  51 inst3 : c  0 inst1 : a  42
inst3 : a  42 inst2 : a  42 inst2 : c  0
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Dependencies analysis 2/2

Two instructions are dependent if the first one needs to be executed before
the second one.

The 3 following instructions are dependent, i.e. no reordering is
possible!

inst1 : a  42
inst2 : b  a + 51
inst3 : c  b ⇥ 12

Two kind of dependencies:
I Data dependencies: the instruction manipulates a ”variable”

computed by another instruction.

I Instruction dependencies: the instruction is a ”cjump”, the next
instruction depends of the ”cjump”.
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Read after Write (RAW)

An instruction reads from a location after an earlier instruction has written
to it.

inst1 : lw $2, 0($4)

inst2 : addi $6, $2, 42

inst1 and inst2 cannot be permuted, otherwise inst2 would read an old
value for $2
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Write after Read (WAR)

An instruction writes to a location after an earlier instruction has read
from it.

inst1 : lw $2, 0($4)

inst2 : addi $4, $12, 42

inst1 and inst2 cannot be permuted, otherwise inst1 would read a new
value for $4
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Write after Write (WAW)

An instruction writes to a location after an earlier instruction has written
to it.

inst1 : add $1, $2, $3

inst2 : add $1, $5, $6

inst1 and inst2 cannot be permuted, otherwise inst1 would write an old
value in $1
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Why and When reordering?

We would like to reorder the instructions within each basic block in a way
which:

preserves the dependencies between those instructions (and hence the
correctness of the program)

achieves the minimum possible number of pipeline stalls, i.e. two
instructions simultaneously in the pipeline manipulates same data,
registers, etc.

The two problems can be addressed separately (whew!).
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Preserving and computing dependencies?

We construct a directed acyclic graph (DAG) to represent the
dependencies between instructions:

For each instruction in the basic block, create a corresponding vertex
in the graph

For each dependency between two instructions, create a corresponding
(annotated) edge in the graph. Note that this edge is annotated.
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Computing the dependency graph

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)
i2 : lw $2,4($10) i5 : lw $4,8($10)
i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Type of dependency: RAW, WAW, WAR
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Preserving dependencies: Critical Path 1/2

The critical path represents the longest path between two nodes. We add
delays (weights) to edges:

0 for WAW and WAR dependencies

2 for RAW dependencies with memory access

1 for other RAW dependencies

i1

i2

i3

i4

i5

i6

i7

2

22 2 0
2

0

2
2
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Preserving dependencies: Critical Path 2/2

Any (reverse) topological sort of this DAG (i.e. any linear ordering of the
vertices which keeps all the edges “pointing forwards”) will maintain the
dependencies and hence preserve the correctness of the program.

Algorithm:

Associate a weight 1 to all ”instruction node”

For all nodes ni in topological postorder
I If ni is not a leaf

F For all nodes nj in succ(ni) do
ni.weight  max (ni.weight, nj.weight+ delay(ni, nj))

Remember ”important” edges during computations, they will form the
critical path.
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Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1

i5:1

i6:1

i7:1

i7:1

i7 doesn’t have successors, skip it!

i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5

i1:1

delay(i1, i3) + i3.weight=7 > 1, change i1 weight!

i1:7

i2:1

delay(i2, i3) + i3.weight=7 > 1, change i2 weight!

i2:7

CCMP2 Instruction scheduling May 19, 2018 13 / 57



Computing the critical path

Delays: blue arrows 2, red and green 0

i1:1

i2:1

i3:1

i4:1
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i6:1

i7:1

i7:1
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i7:1

i6:1

delay(i6, i7)=2 > 1, change i6 weight!

i6:3

i5:1

delay(i5, i6)=2 > 1, change i5 weight!

i5:5

i4:1

i6.weight=3 > 1, change i4 weight!

i4:3

i3:1

delay(i3, i4) + i4.weight=3 > 1, change i3 weight!

i3:5
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So many orders . . . with one critial path

i1

i2

i3

i4

i5

i6

i7

i1,i2,i3,i4,i5,i6,i7 i1,i2,i3,i5,i4,i6,i7 i2,i1,i3,i5,i4,i6,i7 i2,i1,i3,i4,i5,i6,i7
i1,i2,i5,i3,i4,i6,i7 i2,i1,i5,i3,i4,i6,i7 i1,i5,i2,i3,i4,i6,i7 i2,i5,i1,i3,i4,i6,i7

i5,i1,i2,i3,i4,i6,i7 i5,i2,i1,i3,i4,i6,i7

All these permutations respect dependencies
but is there a best instruction scheduling?
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Performances and Pipeline

Not all orders are equivalents!

Some dependencies can bring hazards that slow down performances
inside of the pipeline

Hazard occurs when:
I 1 instruction requires the previous instruction has finished
I 2 instructions need the same data at the same time: one of the two is

blocked
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Instructions Pipeline

The microprocessor (MIPS) contains 5 stages:

if: Instruction Fetch

id: Instruction Decode. Read operands from registers, compute the
address of the next instruction

ex Execute instructions requiring the ALU

me Read/write into Memory

wb Write Back. Results are written into registers.

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9

instr1 if id ex me wb

instr2 if id ex me wb

instr3 if id ex me wb

instr4 if id ex me wb

instr5 if id ex me wb
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Hazard: RAW dependencies 1/2

Some instruction requires a result computed by a previous one!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7

lw $2, 0($4) if id ex me wb

addi $5, $2, 10 if id ex me wb

lw produces its result into $2 during the me stage

addi requires $2 for the ex stage

In this example, 1 stall (cycle 4)

The goal of risc architectures is to produce one per cycle!
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Hazard: RAW dependencies 2/2

Consider now the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb

addi $5, $2, 10 if id ex me wb

add $12, $9, $11 if id ex me wb

Let’s look . . . instruction 3 is independent from the others so we can
change the order!

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8

lw $2, 0($4) if id ex me wb

add $12, $9, $11 if id ex me wb

addi $5, $2, 10 if id ex me wb
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Hazard: WAW dependencies

Two instructions write in the same register!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb

addi $5, $2, 10 if id ex me wb

WAW do not produce stalls !
(even when writing in the same memory address)
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Hazard: WAR dependencies

One instruction writes where a previous one reads!

Consider the following example:

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6

addi $5, $11, 42 if id ex me wb

addi $11, $2, 10 if id ex me wb

WAR do not produce stalls !
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Back to the example – without scheduling

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)
i2 : lw $2,4($10) i5 : lw $4,8($10)
i3 : add $3,$1,$2 i6 : add $3,$1,$4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

i1 if id ex me wb

i2 if id ex me wb

i3 if id ex me wb

i4 if id ex me wb

i5 if id ex me wb

i6 if id ex me wb

i7 if id ex me wb

Without scheduling: 2 dependencies, 2 stalls, 13 cycles!
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Minimizing Stalls – First approach

Each time we emit the next instruction, we should try to choose one which

P1 does not conflict with the previous emitted instruction

P2: is most likely to conflict if first of a pair (e.g. prefer lw to add)

P3: is as far away as possible (along paths in the DAG) from an
instruction which can validly be scheduled last

Algorithm:

Compute the dependency graph

While the list of candidate instructions is not empty
I If one instruction satisfies P1, P2, and P3: remove it from the list and

emit it.
F Remove the instruction from the DAG and insert the newly minimal

elements into the candidate list.

I Otherwise emit a nop instruction
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Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)
i2 : lw $2,4($10) i5 : lw $4,8($10)
i3 : add $3,$1,$2 i6 : add $3,$1,$4

i1

i2

i3

i4

i5

i6

i7

Candidates = {i1, i2, i5}
Final Order =

i1

Choose i1 since it satisfies P1, P2 and P3
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Applying scheduling algorithm to the example

i1 : lw $1,0($10) i4 : sw $3,12($10) i7 : sw $3,16($10)
i2 : lw $2,4($10) i5 : lw $4,8($10)
i3 : add $3,$1,$2 i6 : add $3,$1,$4

Final Order = i1, i2, i5, i3, i4, i6, i7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

i1 if id ex me wb

i2 if id ex me wb

i5 if id ex me wb

i3 if id ex me wb

i4 if id ex me wb

i6 if id ex me wb

i7 if id ex me wb

With scheduling: still 2 dependencies but 0 stalls and 11 cycles!
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Applying scheduling algorithm to the example
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A word on scheduling strategies

Sometimes we cannot avoid some stalls

Computing the critical path can be smarter:
I Rather than attributing 1 as weight to every instruction, we can adjust

according to the real time of executing the instruction
I We can take advantages of the number of successors
I ... many yet-to-be-define heuristics!

Computing the DAG of dependencies can be done in O(n2) by
scanning backwards through the basic block and adding edges as
dependencies arise
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A word on performances

We can statically compute instructions per cycle IPC=nb instructions
nb cycles , to

evaluate 2 possible scheduling.

In the previous example:

without scheduling IPC= 7
13 = 0.53

with scheduling IPC= 7
11 = 0.63 (better!)

We can also statically compute cycle per instructions: CPI = 1
IPC .

The CPI lower bound is
P

↵⇥�
nb instructions , avec ↵ is the number of instructions

for a given instruction type and � the associated cost.
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Can we do better?

Consider the following code (representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb

i2 if id ex me wb

i3 if id ex me wb

i4 if id ex me wb

i5 if id ex me wb

16 cycles for 5 instructions that are all dependent!
IPC = 0.31
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Loop Unrolling

Replicate loop body to expose more parallelism

Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling
int i; int i;
for (i = 0; i < 100; ++i) for (i = 0; i < 100; i+=5)
tab[i] = tab[i] +42; tab[i] = tab[i] +42;

tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Special care must be taken for pre and post loops operations (as well as
intra-loop dependencies)
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Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0
i6: Loop: lw $t0, 0($s1) # t0=array element
i7: addu $t0, $t0, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i10: bne $s1, $0, Loop # branch s1!=0
i11: Loop: lw $t0, 0($s1) # t0=array element
i12: addu $t0, $t0, $s2 # add scalar in s2
i13: sw $t0, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

First duplicate N times the the body of the loop!

CCMP2 Instruction scheduling May 19, 2018 35 / 57



Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i6: lw $t0, 0($s1) # t0=array element
i7: addu $t0, $t0, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i11: lw $t0, 0($s1) # t0=array element
i12: addu $t0, $t0, $s2 # add scalar in s2
i13: sw $t0, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

Remove redundant labels and jump
(by supposing that we are able to do it!)
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Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i6: lw $t1, 0($s1) # t0=array element
i7: addu $t1, $t1, $s2 # add scalar in s2
i8: sw $t1, 0($s1) # store result
i9: addi $s1, $s1,-4 # decrement pointer
i11: lw $t2, 0($s1) # t0=array element
i12: addu $t2, $t2, $s2 # add scalar in s2
i13: sw $t2, 0($s1) # store result
i14: addi $s1, $s1,-4 # decrement pointer
i15: bne $s1, $0, Loop # branch s1!=0

Use other temporaries name when possible!
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Loop Unrolling – back to the example

i4: Loop: addi $s1, $s1,-12 # decrement pointer
i1: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i6: lw $t1, 4($s1) # t0=array element
i7: addu $t1, $t1, $s2 # add scalar in s2
i8: sw $t1, 4($s1) # store result
i11: lw $t2, 8($s1) # t0=array element
i12: addu $t2, $t2, $s2 # add scalar in s2
i13: sw $t2, 8($s1) # store result
i15: bne $s1, $0, Loop # branch s1!=0

Grab redundant operation and merge them carefully!
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Loop Unrolling – back to the example

i1: Loop: addi $s1, $s1,-12 # decrement pointer for N=3
i2: lw $t0, 0($s1) # t0=array element
i3: lw $t1, 4($s1) # t1=array element
i4: lw $t2, 8($s1) # t2=array element
i5: addu $t0, $t0, $s2 # add scalar in s2
i6: addu $t1, $t1, $s2 # add scalar in s2
i7: addu $t2, $t2, $s2 # add scalar in s2
i8: sw $t0, 0($s1) # store result
i9: sw $t1, 4($s1) # store result
i10: sw $t2, 8($s1) # store result
i11: bne $s1, $0, Loop # branch s1!=0

Schedule the instructions and renumber them (and update comments)!
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Pros & Cons

We avoid a lot of conditional jumps (and many stall hence)

We require 19 cycles for 11 instructions: IPC=0.57
(a lot better than the previous 0.31)

This trick allows to have more independent instructions to insert, and
thus, less stalls!

But we have now a prologue and an epilogue: i.e., two more basic
blocks

Require more temporaries: register allocation will be harder!

Try it by yourself in gcc -funroll-loops
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A very last word on Branch Hazards 1/2

Conditional jumps often introduce delays since we cannot pre-fetch
instrcutions

I Branch Outcome and Branch Target Address are ready at the end of
the EX stage (3th stage)

I Conditional branches are solved when PC is updated at the end of the
ME stage (4th stage)

Can we avoid them?

We only know inext at cycle 5!
c1 c2 c3 c4 c5 c6 c7 c8 c9

bne $1,$2, loop if id ex me wb

nop if id ex me wb

nop if id ex me wb

nop if id ex me wb

inext if id ex me wb
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A very last word on Branch Hazards 2/2

X delayed slot: the X instructions after a branch are systematically
executed

The original SPARC and MIPS processors each used a single branch
delay slot to eliminate single-cycle stalls after branches

We need branch prediction... but nowadays, most of processors do it
for us (and use slt...)!

Some architectures have bypass between stages to avoid stalls

Avoid as possible floating points and jumps!

”Do you program in mips?” she asked. ”nop”, he said.
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Stalls due to caches

When the processor processor needs to access a data:

If data is in cache: with a cost of 3 cycles

Otherwise: with a cost of 100 cycles

Cache Hit

CPU

word transfert

Cache

Memory

Cache Miss

CPU

word transfert

block transfert

Cache

Memory
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Cache Fundamentals 1/2

Memory

Cache

0x1 0x5 0x9 0x13 0x17 0x21

Access to adress 0x1, 4 words are fetchedAccess to adress 0x5, 4 words are fetchedAccess to adress 0x9, 4 words are fetchedAccess to adress 0x13, 4 words are fetchedAccess to adress 0x17, 4 words are fetched

First line of cache is replaced!

Access to adress 0x21, 4 words are fetched

Second line of cache is replaced!
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Cache Fundamentals 1/2

Many strategies to put data into the cache:

Direct Mapping:
I The address is decomposed in 3 parts: tag (8b), line (22b), and

word(2b)
I Each block of main memory maps to only one cache line, i.e.

block-size = cache-line-size
I Simple, Inexpensive, and fixed location for given block

Associative Mapping:
I A main memory block can load into any line of cache
I Memory address is interpreted as tag and word
I Tag uniquely identifies block of memory
I Each block of main memory maps to only one cache line, i.e.

block-size = cache-line-size
I Complex, Expensive, and no-fixed location for given block
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Prefetching

Fetch the data before it is needed (i.e. pre-fetch) by the program

Eliminate cache misses

Involves predicting which address will be needed in the future (as for
branch prediction)

In contrast to branch prediction:
I incorrect prefetched data will simply not be used
I there is no need for state recovery
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Locality

Locality is the principle that future memory accesses are near past
accesses

Memories take advantage of two types of locality
I Temporal locality, i.e. near in time: we will often access the same data

again very soon

I Spatial locality, i.e. near in space/distance: our next access is often
very close to our last access (or recent accesses)

Some Instruction Set Architecture (ISA) allows to pre-fetch some data:
i.e., Humans or compilers has to insert (take advantage) of these
instructions
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Loops optimisations

We have already seen loops-unrolling to avoid stalls inside of the
processor. Other techniques exist to avoid stalls due to cache:

Loop Fission

Loop interchanging

Tabular Grouping

Loop blocking

Loop reversal

Loop tiling

. . .
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Loop Fission 1/2

Consider the following code, and direct mapping strategy:

int A[1024]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i) {
A[i] = B[i];
C[i] = C[i-1] + 1;

}

Fetch A[i ], A[i + 1], A[i + 2] and A[i + 3]Fetch B[i ], B[i + 1], B[i + 2] and B[i + 3]Fetch C[i ], C[i + 1], C[i + 2] and C[i + 3]Fetch C[i � 1] will probably conflict

Hopefully A[i], B[i] and C[i] will not conflict in the cache

but ... C[i-1] will probably!
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Loop Fission 2/2

Solution

Divide the loop into two:

Less pressure on cache

We can now insert padding to avoid conflicts

int A[1024]; padding[xx]; int B[1024]; int C[1024];
for (int i = 1; i<1024; ++i)
A[i] = B[i];

for (int i = 1; i<1024; ++i)
C[i] = C[i-1] + 1;

Try it by yourself in gcc -ftree-loop-distribution
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Loop interchanging 1/2

Consider the following code, and direct mapping cache:

int A[1024][1024];
for (int j = 1; j<1024; ++j)
for (int i = 1; i<1024; ++i)
A[j][i] = A[j][i] * 42;

Fetch A[j ][i ], A[j + 1][i ], A[j + 2][i ], and A[j + 3][i ]Fetch A[j + 1][i ], A[j + 2][i ], A[j + 3][i ], and A[j + 4][i ]

In Fortran, the elements of an array are stored in memory contiguously by
column, and the original loop iterates over rows, potentially creating at

each access a cache miss
A B C
D E F

is stored A D B E C F
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Loop interchanging 2/2

Solution

This transformation switches the positions of one loop that is tightly
nested within another loop.

int A[1024][1024];
for (int i = 1; i<1024; ++i)
for (int j = 1; j<1024; ++j)
A[j][i] = A[j][i] * 42;

Legal if the outermost loop does not carry any data dependence
Try it by yourself in gcc -floop-interchange
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Tabular Grouping 1/2

Consider the following code, and direct mapping cache:

int A[1024]; int B[1024];
for (int j = 1; j<1024; ++j)
A[j] = B[j] * 42;

Fetch B[i ], B[i + 1], B[i + 2] and B[i + 3]Fetch A[i ], A[i + 1], A[i + 2] and A[i + 3]

Dynamic allocation does not allow padding. In the worst case, two miss
per iterations
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Tabular Grouping 2/2

Solution

Group the two tabular into one

struct twoval{int A; int B};
struct twoval R[1024];
for (int j = 1; j<1024; ++j)
R[j].A = R[j].B * 42;

Avoid a lot of caches miss!
Very hard for compiler to detect such cases
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Loop Blocking

Consider the code below.

int A[1024][1024]; int B[1024][1024];
for (int i = 1; i<1024; ++i)
for (int j = 1; j<1024; ++j)
A[i][j] = B[i][j];

If A and B are aligned we may encounter problems.

Similar problems occur when processing images: A[i][j] = B[i-1][j-1] +
B[i-1][j] + B[i-1][j+1] + B[i][j-1] + B[i][j] + B[i][j+1] + B[i-1][j+1] +
B[i+1][j] + B[i+1][j+1] ;

In this latter case, padding is complicated...
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Loop Blocking

Solution

Try to work with data that fit in memory!

int A[1024][1024]; int B[1024][1024];
for (int i = 1; i<1024; i += B)
for (int j = 1; j<1024; j += B)
for (int ii = 1; ii<min(1024, ii+B-1); ii += B)
for (int jj = 1; jj< min(1024, ii+B-1); jj += B)
A[i][j] = B[i][j];
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Summary

stalls in the processor can come from many reasons
I from data dependencies between instructions
I from instruction dependencies
I from cache and memory

modern compiler hardly try to reduce them
I by using Instruction Level Parallelism (i.e, to have a lot of independent

instructions)
I all these optimization must occur before register allocation (which is

the final step)
I When writing a compiler, you must know the target processor by heart!

Caches can be shared between many processors!
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Garbage Collection 1/2

Fisrt apparition in LISP, 1959, McCarthy

Garbage collection is the automatic reclamation of computer storage
(heap) at runtime

Automatic memory management
I New/malloc doesn’t need delete/free anymore

I Necessary for fully modular programming.
Otherwise some modules are responsible for allocation while others are
responsible for deallocation.

I No more memory leaks

I Avoid dangling-pointers/references.
Reclaiming memory too soon is no more possible
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Garbage Collection 2/2

Quite expensive relative to explicit heap management
I Slow running programs down by (very roughly) 10 percent...
I ... But sometime cheaper or competitive
I Fair comparison is di�cult since explicit deallocation a↵ects the

structure of programs in ways that may themselves be expensive

Possible reduction of heap fragmentation

Functional and logic programming languages generally incorporate
garbage collection because their unpredictable execution patterns

D, Python, Caml, E↵eil, Swift, C#, Go, Java, Haskell, LISP, Dylan,
Prolog, etc.
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What is Garbage?

An object is called garbage at some point during execution if it will
never be used again.

What is garbage at the indicated points?

int main() {

Object x, y;

x = new Object ();

y = new Object ();

/* Point A */

x.doSomething ();

y.doSomething ();

/* Point B */

y = new Object ();

/* Point C */

}
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Approximating Garbage

In general, it is undecidable whether an object is garbage

An object is reachable if it can still be referenced by the program.

Goals
Detect and reclaim unreachable objects

TYLA Garbage Collection June 4, 2019 6 / 35



Basics of a Garbage Collector

1 Distinguishing the live objects from the garbage ones

2 Reclaiming the garbage object’ storage

We focus on built-in garbage collectors so that:

allocation routines performs special actions
I reclaim memory
I emit specific code to recognize object format
I etc.

explicit calls to the deallocator are unnecessary
I the allocator will call it on-time
I the objects will be automatically destroyed
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Di↵erent kind of GC

Incremental techniques:
I allow garbage collection to proceed piecemeal while application is

running
I my provide real-time garantees
I can be generalized into concurrent collections

Generationnal Schemes
I improve e�ciency/locality by garbage collecting a smaller area more

often
I avoid overhead due to long time objects
I rely on pause to collect data
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Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed
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Deallocation

Caution
When an object is destructed:

examines pointer fields

for any references R contained by this object, decrement reference
counter of R

If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects
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Exemple

class LinkedList {
LinkedList next = null;

}
int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed
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What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1
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Pros and Cons
Pros:

Easy to implement: perl, Firefox

Can be implemented on top of explicit memory management librairies
(shared ptr)

Interleaved with running time

Small overage per unit of program execution

Transitive reclamation can be deferred by maintaining a list of freed
objects

Real-time requierements: no halt of the system.
Necessary for application where response-time is critical

Cons:

A whole machine word per object

When the number of references to an object overflows, the counter is
set to the maximum and the memory will never be reclaimed

Problem with cycles

E�ciency: cost relative to the running program
TYLA Garbage Collection June 4, 2019 14 / 35
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Analysis

Reference counting tries to find unreachable objects by finding objects
without incoming references

These references have been forgotten !

We have to trace the lifetime of objects
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Intuition

Given knowledge of what’s immediately accessible, find everything
reachable in the program

The root set is the set of memory locations in the program that are known
to be reachable

Graph Problem

Simply do a graph search starting at the root set:

Any objects reachable from the root set are reachable

Any objects not reachable from the root set are not reachable

TYLA Garbage Collection June 4, 2019 17 / 35



How to obtain the root set?

static reference variables

references registered through librairies (JNI, for instance)

For each threads:
I local variables
I current method(s) arguments
I stack
I etc.

TYLA Garbage Collection June 4, 2019 18 / 35



Mark-and-Sweep: the Algorithm

1 Marking phase: Find reachable objects
I Add the root set to a worklist
I While the worklist isn’t empty

F Remove an object from the worklist
F If it is not marked, mark it and add to the worklist all objects reachable

from that object

2 Sweeping phase: Reclaim free memory
I If that object isn’t marked, reclaim its memory
I If the object is marked, unmark it

TYLA Garbage Collection June 4, 2019 19 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set
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How to sweep?

Sweeping requires to know where are unreacheable objets !

Heap :

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Just remove from the heap all non-marked objects
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Problems

Runtime proportional to number of allocated objects
I Sweep phase visits all objects to free them or clear marks

Work list requires lots of memory
I Amount of space required could potentially be as large as all of memory
I Can’t preallocate this space
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Pros and Cons

Pros:

Can free cyclic references

1 bits per state

Runtime can be proportional to the number of reachable objects
(Baker’s algorihtm)

Cons:

Stop the world algorithm with possibly huge pauses times

Memory Fragmentation

Need to walk the whole heap
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Analysis

Locality can be improved
I After garbage collection, objects are no longer closed in memory

Allocation speed can be improved
I After garbage collection, the free list of the allocator must be walked.

The Sweep Phase can be improved
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Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC
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Implementation

Partition memory into two regions: the old space and the new space.

Keep track of the next free address in the new space.

To allocate n bytes of memory:

If n bytes space exist at the free space pointer, use those bytes and
advance the pointer.

Otherwise, do a copy step. To execute a copy step:

For each object in the root set:
I Copy that object over to the start of the old space.
I Recursively copy over all objects reachable from that object.

Adjust the pointers in the old space and root set to point to new
locations.

Exchange the roles of the old and new spaces.
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Problems

How to adjust pointers in the copied objects correctly?

1 Have each object contain a extra space for a forwarding pointer

2 First, do a complete bitwise copy of the object
3 Next, set the forwarding pointer of the original object to point to the

new object
I Follow the pointer to the object it references
I Replace the pointer with the pointee’s forwarding pointer
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Pros and Cons

Pros:

Compact the Heap

Allocation only increments a pointer

No sweep

Cons:

Smaller Heap

Copy

Reference adjusting
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Analysis

The best garbage collectors in use today are based on a combination of
smaller garbage collectors

Objects Die Young

Most objects have extremely short lifetimes

Optimize garbage collection to reclaim young objects rapidly while
spending less time on older objects
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Generational Garbage Collector

Partition memory into several generations

Objects are always allocated in the first generation.

When the first generation fills up, garbage collect it.
I Runs quickly; collects only a small region of memory.

Move objects that survive in the first generation long enough into the
next generation.

When no space can be found, run a full (slower) garbage collection on
all of memory.
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Garbage Collection in Java

1 Split the Heap in 3 zones: eden, survivors and tenured

2 New objects are allocated using a modified stop-and-copy collector in
the Eden space.

3 When Eden runs out of space, the stop-and-copy collector moves its
elements to the survivor space.

4 Objects that survive long enough in the survivor space become
tenured and are moved to the tenured space.

5 When memory fills up, a full garbage collection (perhaps
mark-and-sweep) is used to garbage-collect the tenured objects
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Garbage Collection in C

Boehm GC

Mark and Sweep

Conservative

Consider all program variables as root set

Easy to combine with C
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