MATHEMATIQUES POUR LA SECURITE INFORMATIQUE FMSI

PARTIEL, EPITA_ING1_2021_S6 Mars / Avril 2019, Durée : 1h30 min

H. GROSCOT

Remarques :	Le support de cours est autorisé. Toutes les calculettes sont autorisées.							
Exercice 1 :								
On se donne le nombre n = 20705.								
Q1 – Le nombre de facteurs premiers de n vaut : A 2								
B C	3 4							
Q2 – Le plus grand facteur premier de n est le suivant :								
A	97							
В	101							
C D	103 107							
Ē	109							
	e des facteurs premiers de n vaut :							
A B	135 141							
С	147							
D	153							
E	159							
Q4 - La valeur de φ(n) est la suivante :								
Α	14500							
В	15000							
C	15500							
D	16000							
E	16500							
	e ($\mathbb{Z}/n\mathbb{Z}$, +) est cyclique :							
A B	vrai faux							
Ь	laux							
	re de générateurs du groupe de la question Q5 vaut :							
A B	10336 12750							
C	14302							
D	16000							
E	20704							
Q7 – $(\mathbb{Z}/n\mathbb{Z}, +, x)$ est un corps :								
A	vrai							
В	faux							

Exercice 2:

Nous avons vérifié avec une calculatrice l'identité suivante : 23507 x 11 - 5387 x 48 = 1.

Q7 – Afin de vérifier avec une calculette que 5387 est premier, nous avons essayé de diviser 5387 par les nombres suivants (choisir la meilleure méthode si plusieurs fonctionnent) :

- A 2 ainsi que tous les nombres impairs jusqu'à 5386,
- B 2 ainsi que tous les nombres impairs jusqu'à 1000,
- C 2 ainsi que tous les nombres premiers impairs jusqu'à 101,
- D 2 ainsi que tous les nombres premiers impairs jusqu'à 73,
- E 2 ainsi que tous les nombres premiers impairs jusqu'à 71,
- Q8 $(\mathbb{Z}/5387\mathbb{Z}, +, x)$ est un corps :
 - A vrai
 - B faux
- Q9 Le nombre de générateurs du groupe ($\mathbb{Z}/5387\mathbb{Z}$, +) vaut :
 - A 1344
 - B 2692
 - C 2693
 - D 5386
 - E 5387
- Q10 $(\mathbb{Z}/5387\mathbb{Z}^*, x)$ est un groupe cyclique :
 - A vrai
 - B faux
- Q11 Le nombre de générateurs du groupe de la question Q10 est égal à :
 - A 1344
 - B 2692
 - C 2693
 - D 5386
 - E 5387

Exercice 3:

Nous avons calculé les puissances de 10 modulo le nombre premier p = 17 dans le tableau suivant, où $p_{10}(k) = 10^k \pmod{17}$:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
p ₁₀ (k)	1	10	15	14	4	6	9	5	16	7	2	3	13	11	8	12	1

Q12 - Est-ce que **10** est un générateur de **Z/17Z*** (première réponse) ? Combien de générateurs y at-il dans **Z/17Z*** (deuxième réponse sur la même ligne) ?

- A oui et 16 B non et 16
- C oui et 8
- D non et 8
- E oui et 15.

Q13 – Il est possible de trouver facilement $13^{31} (mod \, 17)$. On trouve :

- A . 2
- B 4
- C 7
- D 11
- E 15

Exercice 4: Utilisation du RSA

Véronique envoie un message à Maurice qu'elle signe en utilisant le RSA. Le message est long, on l'appelle **M** et il occupe une place de 1,5 Mo en mémoire. Véronique utilise une fonction de hashage H connue de Maurice pour calculer :

$$m = H(M)$$
, où

m = 4 071 055 667 727 926 747 805 540 511 627

Q14 - Dans l'optique d'une utilisation du RSA, Véronique a-t-elle vraiment besoin de la fonction H?

A oui B non

Pour signer, elle a besoin de fabriquer une clé. Véronique part du nombre suivant :

p = 79 792 756 297 612 087.

Véronique a utilisé un test de Miller-Rabin, avec 40 essais sur des témoins différents pris au hasard, pour en déduire que **p** est « probablement premier ».

Q15 - Quelle est une majoration de la probabilité pour que **p** ne soit pas premier :

- A 10⁻⁶
 B 2 x 10⁻¹¹
 C 4 x 10⁻¹⁸
 D 8 x 10⁻²⁵
 E 2 x 10⁻³²
- Elle a fait de même avec le nombre q suivant :

q = 95 367 431 640 703

On pose:

n = p.q = 7 609 630 231 635 794 509 887 453 977 161 f = (p - 1)(q - 1) = 7 609 630 231 635 714 621 763 724 724 372 e = 34 348 917 d = 2 569 640 103 788 143 362 303 034 428 671 w = -11 599 034

Q16 - Le nombre d'éléments inversibles de **Z/nZ** vaut :

- A 2 569 640 103 788 143 362 303 034 428 671
- B 4 071 055 667 727 926 747 805 540 511 627
- C 7 609 630 231 635 714 621 763 724 724 372
- D 7 609 630 231 635 794 509 887 453 977 160

On a vérifié:

 $e.d \equiv 1 \pmod{f}$

Véronique a calculé le nombre **c** suivant :

 $c \equiv m^e \pmod{n}$

ce qui a donné :

C = 2 969 387 768 310 818 749 865 678 669 300

Q17 - Dans un deux nombres A B C D E	premier temps, Véronique a envoyé à Maurice sa clé publique. Elle est constituée des : n, e n, c n, f f, e f, c.								
	deuxième temps, Véronique signe le message M avec une signature s . ce reçoit de Véronique le message M , accompagné de cette signature s . La valeur de s :								
A B C D	2 569 640 103 788 143 362 303 034 428 671 2 969 387 768 310 818 749 865 678 669 300 4 071 055 667 727 926 747 805 540 511 627 7 609 630 231 635 714 621 763 724 724 372								
Q19 – En recev A B	vant le message avec sa signature, Maurice a besoin de recalculer H(M). vrai faux.								
Q20 - Avec la A Véronique, B Véronique, C Véronique, D Véronique.	clé publique de Véronique, Maurice pourrait effectuer les opérations suivantes : Chiffrer un message M1 destiné à Véronique et signer un message M2 pour								
	Chiffrer un message M1 destiné à Véronique mais non signer un message M2 pour								
	Signer un message M2 pour Véronique mais pas chiffrer un message M1 destiné à								
	Ni chiffrer un message M1 destiné à Véronique ni signer un message M2 pour								