Chapitre 1 : Continuité et calcul différentiel

Table des matières

1	Fon	ctions o	$\mathbf{de} \mathbb{R}^n \mathbf{dans} \mathbb{R}$	4
	1.1	Définiti	ion	4
	1.2	Exempl	les et notation	4
		1.2.1	Exemple de fonctions définies sur \mathbb{R}^2	4
		1.2.2	Exemple de fonctions définies sur \mathbb{R}^n	4
	1.3	Graphe	s	4
		1.3.1	Définition	4
		1.3.2	Exemples de graphes de fonctions de \mathbb{R}^2 dans \mathbb{R}	4
		1.3.3	GeoGebra	5
	1.4	Lignes	de niveau	5
		1.4.1	Définition	5
		1.4.2	Exemples de lignes de niveau de fonctions de deux variables	5
2	Cor	ntinuité		6
	2.1	Rappel	: Continuité d'une fonction définie sur $\mathbb R$ $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	6
		2.1.1	Définition de la continuité en un point de \mathbb{R}	6
			Interprétation de la continuité en un réel	6
			Continuité sur \mathbb{R}	6
	2.2		uité d'une fonction définie sur \mathbb{R}^2	6
			Distance et continuité en un point de \mathbb{R}^2	6
			Interprétation de la continuité en un point de \mathbb{R}^2	7
			Continuité sur \mathbb{R}^2	7
	2.3		uité d'une fonction définie sur \mathbb{R}^n	7
	2.4		uité et opérations, composition et fonctions usuelles définies sur \mathbb{R}^n	7
			Continuité des fonctions polynolimales	7
		2.4.2	Continuité et opérations	7
		2.4.3	Continuité et composition	8
		2.4.4	Continuité des fonctions usuelles	8
3	Cal		érentiel du premier ordre	8
	3.1		es partielles d'ordre 1	8
		3.1.1	Définition de la dérivée partielle par rapport à la $i\`eme$ variable	8
			Autre notation	8
		3.1.3	Exemple d'une fonction de trois variables	9
	3.2	Gradier	nt	9
		3.2.1	Définition	9
		3.2.2	Exemple	9

4	Cal	Calcul différentiel d'ordre 2			
	4.1	Dérivée partielle par rapport à la j-ième puis à la i-ième variable			
	4.2	Exemple de dérivées partielles d'ordre 2			
	4.3	Matrice Hessienne			
		.3.1 Définition			
		.3.2 Exemple			
		.3.3 Fonction de classe C^2			
		3.4 Théorème de Schwartz			

1 Fonctions de \mathbb{R}^n dans \mathbb{R}

1.1 Définition

On appelle fonction de \mathbb{R}^2 dans \mathbb{R} tout procédé permettant d'associer à chaque couple (x,y) de réels, un unique réel appelé l'image du couple (x,y).

En généralisant, On appelle fonction de \mathbb{R}^n dans \mathbb{R} tout procédé permettant d'associer à chaque n-uplet $(x_1, x_2, ..., x_n)$ de réels, un unique réel appelé l'image du n-uplet $(x_1, x_2, ..., x_n)$.

1.2 Exemples et notation

1.2.1 Exemple de fonctions définies sur \mathbb{R}^2

Les fonctions $(x,y) \mapsto x^2 + y^2$ et $(x,y) \mapsto e^{-(x+y)}$ sont des fonctions de \mathbb{R}^2 dans \mathbb{R} .

1.2.2 Exemple de fonctions définies sur \mathbb{R}^n

Les fonctions $(x_1, x_2, ..., x_n) \longmapsto x_1^2 + x_2^2 + ... + x_n^2$ et $(x_1, x_2, ..., x_n) \longmapsto e^{-(x_1 + x_2 + ... + x_n)}$ sont des fonctions de \mathbb{R}^n dans \mathbb{R} .

1.3 Graphes

1.3.1 Définition

Pour une fonction f de \mathbb{R}^n dans \mathbb{R} , on appelle graphe de f l'ensemble des points $(x_1, x_2, ...x_n, y)$ de \mathbb{R}^{n+1} , vérifiant l'équation $y = f(x_1, x_2, ..., x_n)$.

Remarque : pour n=2, le graphe d'une fonction de \mathbb{R}^2 dans \mathbb{R} est une **surface** ou **nappe** de l'espace. Elle a pour équation z = f(x, y).

1.3.2 Exemples de graphes de fonctions de \mathbb{R}^2 dans \mathbb{R}

Exemple 1

Voici le graphe de la fonction de \mathbb{R}^2 dans \mathbb{R} définie pour tout couple (x,y) par : $f(x,y)=x^2+y^2$

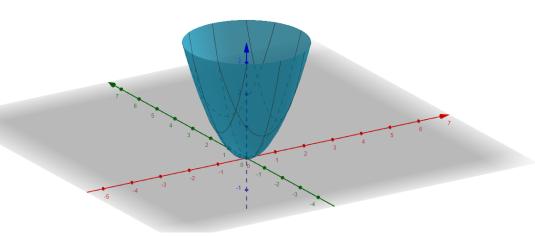


FIGURE 1 – Le graphe de $(x, y) \longmapsto x^2 + y^2$

Exemple 2

Et celui de la fonction définie pour tout couple (x, y) de réels par : g(x) = x + 2y + 1.

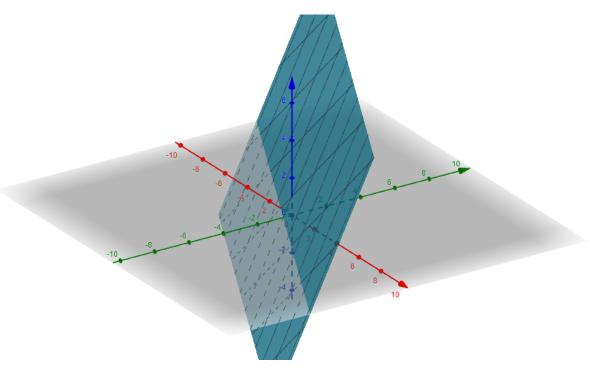


FIGURE 2 – Le graphe de $(x, y) \longmapsto x + 2y + 1$

A noter que pour une fonction linéaire en x et en y (comme ici la fonction g), la surface représentant la fonction est un plan.

1.3.3 GeoGebra

Pour travailler et vous familisariser avec les graphes des fonctions de deux variables, je vous invite à utiliser l'excellent outil GeoGebra ici : https://www.geogebra.org/?lang=en

1.4 Lignes de niveau

1.4.1 Définition

Pour tout réel λ , on appelle ligne de niveau λ de f, l'ensemble des $(x_1, x_2, ..., x_n)$ de \mathbb{R}^n vérifiant l'équation $f(x_1, x_2, ..., x_n) = \lambda$.

Pour les fonctions de \mathbb{R}^2 dans \mathbb{R} , la ligne de niveau λ est l'ensemble des points du plan vérifiant l'équation $f(x,y) = \lambda$. Dans le cas de ces fonctions, les lignes de niveau sont des courbes.

1.4.2 Exemples de lignes de niveau de fonctions de deux variables

Reprenons l'exemple vu dans les graphes plus hauts. Quelle serait la ligne de niveau $\lambda = 1$ de la fonction $x \longmapsto x^2 + y^2$?

Par définition, cette ligne de niveau serait l'ensemble des points de \mathbb{R}^2 , autrement dit du plan, vérifiant l'équation :

$$x^2 + y^2 = 1$$

Il s'agit donc du cercle trigonométrique.

2 Continuité

2.1 Rappel : Continuité d'une fonction définie sur \mathbb{R}

Il est important de bien rappeler la définition de la continuité pour une fonction de \mathbb{R} dans \mathbb{R} car cela nous permettra de comprendre celle de la continuité pour une fonction de plusieurs variables.

2.1.1 Définition de la continuité en un point de $\mathbb R$

Une fonction f de \mathbb{R} dans \mathbb{R} est continue en un réel a si et seulement si :

$$\lim_{x \to a} f(x) = f(a)$$

Ce qui s'écrit plus en détail :

$$\forall \epsilon > 0, \exists \eta_{\epsilon} > 0, |x - a| \leq \eta_{\epsilon} \Longrightarrow |f(x) - f(a)| \leq \epsilon$$

2.1.2 Interprétation de la continuité en un réel

Pour tout ϵ , sous-entendu aussi petit soit-il, il est toujours possible de définir un réel η_{ϵ} , tel que dès lors que la distance de x à a est inférieure à η_{ϵ} , la distance de f(x) à f(a) sera inférieure à ϵ .

Autrement dit, on peut obtenir un f(x) aussi "proche" de f(a) que souhaité, à condition de choisir un x suffisamment proche de a.

2.1.3 Continuité sur \mathbb{R}

On construit la définition de la continuité d'une fonction sur un intervalle et a fortiori sur \mathbb{R} à partir de la définition de la continuité en un point de \mathbb{R} .

Définition:

f est continue sur $\mathbb{R} \iff \forall a \in \mathbb{R} \ f$ est continue en a.

Etre continue sur \mathbb{R} pour une fonction signifie être continue en tout point de \mathbb{R} .

2.2 Continuité d'une fonction définie sur \mathbb{R}^2

2.2.1 Distance et continuité en un point de \mathbb{R}^2

Reprenons notre interprétation de la définition de la continuité en un point de \mathbb{R} . Si nous voulions transposer cette définition en un point de \mathbb{R}^2 , il nous faudrait définir l'équivalent de la notion de distance sur \mathbb{R} . Dans \mathbb{R}^2 cela reste assez concret, puisque nous pourrions considérer comme notion équivalente celle de la distance entre deux points dans le plan.

Définition : Soit deux points $A=(x_A,y_A)$ et $B=(x_B,y_B)$ de \mathbb{R}^2 , on appelle distance de A à B le réel suivant :

$$d(A,B) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

Définition : Soit une fonction f définie sur \mathbb{R}^2 et un point M_0 de \mathbb{R}^2 . On dit que f est continue en M_0 lorsque, pour tout réel ϵ strictement positif, il existe un réel η_{ϵ} strictement positif tel que, pour tout point M de \mathbb{R}^2 , on a :

$$d(M, M_0), B) \le \eta_{\epsilon} \Rightarrow |f(M) - f(M_0)| \le \epsilon$$

2.2.2 Interprétation de la continuité en un point de \mathbb{R}^2

Ainsi notre interprétation de la continuité en un point de \mathbb{R} reste transposable, mais il nous aura fallu, entre temps, redéfinir la notion de distance et donc de "**proche**" dans \mathbb{R}^2 .

Ceci étant fait on peut toujours dire :

f est continue en un point A de \mathbb{R}^2 signifie que f(x,y) peut être aussi "proche" de f(A) que souhaité, à condition de choisir le point (x,y) suffisamment proche de A.

2.2.3 Continuité sur \mathbb{R}^2

On construit la définition de la continuité d'une fonction sur \mathbb{R}^2 à partir de la définition de la continuité en un point de \mathbb{R}^2 .

Définition: Une fonction est continue sur \mathbb{R}^2 si elle est continue en tout point de \mathbb{R}^2 .

2.3 Continuité d'une fonction définie sur \mathbb{R}^n

Pour extrapoler la notion de continuité en un point de \mathbb{R} à celle de la continuité en un point de \mathbb{R}^2 nous avons défini la distance entre deux points de \mathbb{R}^2 .

Nous allors donc procéder de la même manière sur \mathbb{R}^n .

Définition : Soit deux points $A = (x_1, x_2, ..., x_n)$ et $B = (x'_1, x'_2, ...x'_n)$ de \mathbb{R}^n , on appelle distance de A à B le réel suivant :

$$d(A,B) = \sqrt{(x_1 - x_1')^2 + (x_2 - x_2')^2 + \dots + (x_n - x_n')^2}$$

Définition: Soit une fonction f définie sur \mathbb{R}^n et un point M_0 de \mathbb{R}^n . On dit que f est continue en M_0 lorsque, pour tout réel ϵ strictement positif, il existe un réel η_{ϵ} strictement positif tel que, pour tout point M de \mathbb{R}^n , on a :

$$d(M, M_0) \le \eta_{\epsilon} \Rightarrow |f(M) - f(M_0)| \le \epsilon$$

Enfin on construit à nouveau la définition de la continuité d'une fonction sur \mathbb{R}^n à partir de la définition de la continuité en un point de \mathbb{R}^n .

Définition Une fonction est continue sur \mathbb{R}^n si elle est continue en tout point de \mathbb{R}^n .

2.4 Continuité et opérations, composition et fonctions usuelles définies sur \mathbb{R}^n

2.4.1 Continuité des fonctions polynolimales

Les fonctions polynomiales sont continues sur \mathbb{R}^n .

2.4.2 Continuité et opérations

Sommes, combinaisons linéaires, produits et quotients bien définis de fonctions définies sur \mathbb{R}^n sont continues sur \mathbb{R}^n .

2.4.3 Continuité et composition

Si f est continue sur \mathbb{R}^n , et à valeurs dans un intervalle I de \mathbb{R} et si g est continue sur I et à valeurs dans \mathbb{R} , alors $g \circ f$ est continue sur \mathbb{R}^n .

2.4.4 Continuité des fonctions usuelles

De manière générale, les fonctions usuelles qu'on manipulera dans ce cours ne nous poseront pas de problème de continuité.

3 Calcul différentiel du premier ordre

3.1 Dérivées partielles d'ordre 1

3.1.1 Définition de la dérivée partielle par rapport à la ième variable

Définition Soit f une fonction définie sur \mathbb{R}^n et $A = (a_1, a_2, ..., a_n)$ un point de \mathbb{R}^n . Si la fonction définie sur \mathbb{R} et $x \longmapsto (a_1, a_2, ..., a_{i-1}, x, a_{i+1}, ..., a_n)$ est dérivable en a_i , on dit que f admet une dérivée partielle d'ordre 1 par rapport à la i - ème variable en A, notée $(\partial_i)(f)$ et définie par :

$$(\partial_i)(f)(A) = \lim_{h \to 0} \frac{f(a_1, a_2, \dots a_{i-1}, a_i + h, a_{i+1}, \dots, a_n)}{h}$$

Par ailleurs si f admet une dérivée partielle d'ordre 1 en tout point de \mathbb{R}^n par rapport à la i - en variable, alors la fonction $\partial_i(f)$ définie sur \mathbb{R}^n par $(x_1, x_2, ..., x_n) \longmapsto \partial_i(f)(x_1, x_2, ..., x_n)$ s'appelle la fonction dérivée partielle d'ordre 1 de f par rapport à la i-en variable.

Autrement dit, pour calculer la dérivée partielle d'une fonction de n variables par rapport à sa $i - \grave{e}me$ variable, on dérive la fonction de $\mathbb R$ dans $\mathbb R$ qui dépendrait seulement de la $i - \grave{e}me$ variable, en considérant que les autres variables sont des constantes.

3.1.2 Autre notation

La dérivée partielle de f par rapport à la $i - \grave{e}me$ variable, autrement dit la fonction $\partial_i(f)$ définie sur \mathbb{R}^n par $(x_1, x_2, ..., x_n) \longmapsto \partial_i(f)(x_1, x_2, ..., x_n)$ peut également se noter de la façon suivante :

$$\frac{\partial(f)}{\partial(x)}$$

Les deux notations sont équivalentes et nous avons :

$$\frac{\partial(f)}{\partial(x)} = \partial_i(f)$$

Dans ce cours nous faisons le choix d'utiliser la précédente notation $\partial_i(f)$.

3.1.3 Exemple d'une fonction de trois variables

Calculer les trois dérivées partielles d'ordre 1 de la fonction f (définie ci-dessous) par rapport aux variables x, y, et z:

$$f_3: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ \\ (x,y,z) & \longmapsto & \frac{xz^2}{e^x + e^y} \end{array} \right.$$

La fonction f ici est polynomiale et en tant que telle, dérivable sur \mathbb{R}^3 .

Commençons par déterminer l'expression de la dérivée de f qu'on notera $(\partial_1)(f)$ par rapport à la première variable x.

Comme expliqué plus haut, pour dériver f par rapport à x, on considère la fonction $x \longmapsto \frac{xz^2}{e^x + e^y}$ et on la dérive par rapport à x.

Autrement dit, on traite les variables y et z comme des constantes. Ce qui nous donne :

$$(\partial_1)(f)(x,y,z) = \frac{z^2(e^y + e^x - xe^x)}{(e^x + e^y)^2}$$

Puis en dérivant par rapport aux variables y et z on obtient respectivement :

$$(\partial_2)(f)(x,y,z) = \frac{-xz^2e^y}{(e^x + e^y)^2}$$

$$(\partial_3)(f)(x,y,z) = \frac{2xz}{e^x + e^y}$$

3.2 Gradient

3.2.1 Définition

Soit f une fonction de \mathbb{R}^n dans \mathbb{R} .

Lorsque pour tout entier i de [1; n], f admet en A une dérivée partielle d'ordre 1 par rapport à la $i - \grave{e}me$ variable, on appelle gradient de f en A, et on note $\nabla(f)(A)$, ce qui se lit "nabla de de f en A", le vecteur de \mathbb{R}^n défini par :

$$\nabla(f)(A) = ((\partial_1)(f)(A), (\partial_2)(f)(A), ..., (\partial_n)(f)(A))$$

3.2.2 Exemple

Reprenons l'exemple de la fonction traitée en exemple plus haut :

$$f_3: \left\{ egin{array}{ll} \mathbb{R}^3 & \longrightarrow \ \mathbb{R} \\ (x,y,z) & \longmapsto rac{xz^2}{e^x+e^y} \end{array}
ight.$$

Quel serait le vecteur gradient de cette fonction au point A = (1, 1, 1)?

Pour déterminer ce vecteur il suffit de construire un triplet de réels en prenant dans l'ordre les valeurs de $(\partial_1)(f)$, de $(\partial_2)(f)$ et de $(\partial_3)(f)$ en le point A = (1, 1, 1).

Or nous avions comme résultat par le calcul:

$$(\partial_1)(f)(x,y,z) = \frac{z^2(e^y + e^x - xe^x)}{(e^x + e^y)^2} \longrightarrow (\partial_1)(f)(1,1,1) = \frac{e}{(2e)^2} = \frac{1}{4e}$$

$$(\partial_2)(f)(x,y,z) = \frac{-xz^2e^y}{(e^x+e^y)^2} \longrightarrow (\partial_2)(f)(1,1,1) = \frac{-e}{(2e)^2} = -\frac{1}{4e}$$

$$(\partial_3)(f)(x,y,z) = \frac{2xz}{e^x + e^y} \longrightarrow (\partial_3)(f)(1,1,1) = \frac{1}{e}$$

4 Calcul différentiel d'ordre 2

Remarque : nous ne reviendrons pas sur les questions de dérivabilité déjà considérées pour les dérivées partielles d'ordre 1. Le principe reste le même.

4.1 Dérivée partielle par rapport à la j-ième puis à la i-ième variable

Soit deux entiers i et j de [1; n] et un point A de \mathbb{R}^n . Si ∂_j de f existe et admet une dérivée partielle par rapport à la i – ème variable en A, alors on dit que f admet une dérivée partielle d'ordre 2 par rapport à la j-ième puis par rapport à la i-ème variable en A et on la note $(\partial)^2_{i,j}(f)$

La notation $(\partial)_{i,j}^2(f)$ signifie "la dérivée de f par rapport à la j-ième puis par rapport à i-ème variable. Autrement dit la notation $(\partial)_{i,j}^2(f)$ est équivalente à la notation $\frac{\partial(\frac{\partial(f)}{\partial(x_j)})}{\partial(x_i)}$ ou encore $\frac{\partial^2(f)}{\partial(x_i)\partial(x_j)}$

La fonction $(x_1, x_2, ..., x_n) \mapsto (\partial)_{i,j}^2(f)(x_1, x_2, ..., x_n)$, définie sur \mathbb{R}^n , s'appelle dérivée partielle d'ordre 2 de f par rapport à x_j puis à x_i .

4.2 Exemple de dérivées partielles d'ordre 2

Soit la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = 2x^3 - x^2y + xy^2 - 3xy + 5x - y + 7$$

On a:

$$(\partial_1)(f)(x,y) = 6x^2 - 2xy + y^2 - 3y + 5$$

et

$$(\partial_2)(f)(x,y) = -x^2 + 2xy - 3x - 1$$

Ce qui nous donnera, en dérivant $(\partial_1)(f)$ à nouveau par rapport la première variable x:

$$\partial_{1,1}^2(f)(x,y) = 12x - 2y$$

Puis en dérivant toujours $(\partial_1)(f)$ cette fois par rapport à la deuxième variable y:

$$\partial_{2,1}^2(f)(x,y) = -2x + 2y - 3$$

Ensuite, en dérivant $(\partial_2)(f)$ par rapport la première variable x:

$$\partial_{1,2}^2(f)(x,y) = -2x + 2y - 3$$

Enfin, en dérivant $(\partial_2)(f)$ à nouveau par rapport la deuxième variable y:

$$\partial_{2,2}^2(f)(x,y) = 2x$$

4.3 Matrice Hessienne

4.3.1 Définition

Définition: Si les dérivées partielles d'ordre 2 de f en A existent, on appelle matrice hessienne def en A la matrice notée $\nabla^2(f)(A)$, dont le coefficient de la i-ème ligne et de la j-ième colonne est $\partial^2_{i,j}(f)(A)$

4.3.2 Exemple

Reprenons l'exemple de la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = 2x^3 - x^2y + xy^2 - 3xy + 5x - y + 7$$

Nous avons vu que cette fonction polynomiale en (x, y) est dérivable sur \mathbb{R}^2 . Sa matrice Hessienne en tout point A = (x, y) de \mathbb{R}^2 s'écrit alors :

$$\nabla^2(f)(A) = \begin{pmatrix} \partial_{1,1}^2(f)(x,y) & \partial_{1,2}^2(f)(x,y) \\ \partial_{2,1}^2(f)(x,y) & \partial_{2,2}^2(f)(x,y) \end{pmatrix} = \begin{pmatrix} 12x - 2y & -2x + 2y - 3 \\ -2x + 2y - 3 & 2x \end{pmatrix}$$

4.3.3 Fonction de classe C^2

Définition: On dit qu'une fonction f est de classe C^2 sur \mathbb{R}^2 lorsque f admet des dérivées partielles d'ordre 2 sur \mathbb{R}^2 , et que chacune de ces dérivées partielles est continue sur \mathbb{R}^2 .

4.3.4 Théorème de Schwartz

Si f est de classe C^2 alors $\partial_{2,1}^2(f) = \partial^2(f)$.

Remarques

La fonction de notre exemple étant de classe C^2 sur \mathbb{R}^2 , elle illustre bien ce théorème.

Par ailleurs ce théorème implique une matrice Hessienne symétrique pour les fonctions de classe C^2 qui représentent la grande majorité des fonctions que nous serons amenés à manipuler dans ce cours.