
1

J A V A S C R I P T

2

H e a d o f E n g i n e e r i n g @ e M o t e e v  

f o r m e r M T I & & A C U @ E P I TA

I n t r o

This is a just a text holder in which you assume that I wrote a lot of

interesting things, which obviously I have not. 

If you can’t read it easily, you are too far away, get closer to the scene.  

If you still have difficulties reading this, raise your hand and ask your

question.

QUENTIN PRÉ

3

You are encouraged to make mistakes, 

You are forbidden to make faults.

R U L E S

No question makes you stupid, 

Asking no questions though… 

 

note: your question might get answered

by another question.

A S K

If you do not intend to follow the lecture, 

assume consequences for your actions

and stay home. 

 

You don’t need your laptop outside of

tutorials.

F O C U S

Do not expect knowledge to fall into your

hands.

E F F O R T

4

A LITTLE BIT
OF HISTORY

5

The Web
H i s t o r y

A f e w e v e n t s t o h a v e i n m i n d

6

“It is better to fail in
originality than to

succeed in
imitation.”

H e r m a n M e l v i l l e

In the Beginning
there was nothing…

7

BRENDAN  
EICH

T h e n …

Took 10 days in 1995 at Netscape to build…

Mocha !
w a i t …

L iveScript ?
O h n o …

JavaScript
(because “Java” was the most successful language at the time…)

8

2000
Development of ES4 is

started

PRE-ES6
P R E H I S T O R Y

A b r i e f h i s t o r y o f t h e m u l t i p l e b r a n c h e s o f J a v a s c r i p t

But,
Microsoft…

2007
Yahoo, Google and

Microsoft release

Javascript 3.1

2005

2003
Development of ES4 is

aborted

1998
ECMASCRIPT 2  

- 

1999
ECMASCRIPT 3

2007
As the AS3

implementation in

SpiderMonkey is

stalled

9

TC-39
A C O M I T T E E

Made of open source contributors and engineers

from browser manufacturers and major web actors

(Mozilla, Apple, Microsoft, Google…)

S P E C I F I Y N G

They identify needs, write the specs for ECMA-262

and maintain and update this specifications.

O V E R V I E W I N G
The implementation of the standard

10

S T A G E 1  
(p r o p o s a l)

S T A G E 2  
(d r a f t)

S T A G E 3  
(c a n d i d a t e)

T C - 3 9 a g r e e s t h e i d e a i s

w o r t h p u r s u i n g

A F i r s t r e v i s i o n o f t h e

f e a t u r e s p e c i s w r i t t e n ,  

2 e x p e r i m e n t a l

i m p l e m e n t a t i o n s a r e

l a u n c h e d

F i n i s h i n g f e a t u r e s p e c , a n d

g e t s e n r i c h e d w i t h

f e e d b a c k s f r o m

i m p l e m e n t a t i o n s a n d u s e r s .

JOURNEY OF A FEATURE REQUEST FOR ECMA-262

S t a g e 0  
(S t r a w m a n)

A C o n t r i b u t o r o r M e m b e r o f

T C 3 9 t h i n k s i t ’ s a g o o d i d e a

a n d w r i t e s a f i r s t d o c u m e n t

d e s c r i b i n g t h e f e a t u r e s p e c

S T A G E 4  
(F i n i s h e d)

T h e f e a t u r e s p e c i f i c a t i o n i s

f i n i s h e d ,  

T h e f e a t u r e w i l l b e a n

o f f i c i a l p a r t o f t h e l a n g u a g e

o n t h e n e x t r e v i s i o n o f

E C M A - 2 6 2

11

ES-5

2 0 0 9 - 2 0 1 5

12

ES6 and Beyond

E S 6 = = = E S 2 0 1 5

E S 7 = = = E S 2 0 1 6

E S 8 = = = E S 2 0 1 7

…

http://www.ecma-international.org/ecma-262/6.0/

13

14

Javascript 101

15

D y n a m i c
Javascript has all the paradigms for

functional programming

F u n c t i o n a l
Javascript offers OOP paradigms via

Prototype inheritance

O b j e c t - o r i e n t e d

Browsers will compile JS to bytecode

ahead of time, allowing for performance

boosts

J u s t - I n - T i m e
Javacript is present in the browser, on the

server, in IoT, in watches…

E v e r y w h e r e

16

Double-precision on 64-bits values

Number
T y p e s

Str ing
T y p e s

No Integer type

Math module provides common functions

(cos, sin…) and constants (PI)

NaN for Not A Number -> hint: avoid it

parseInt(value: String, base: Number) ->

Number 

careful: parseInt(‘toto’, 10) returns NaN 

0.1 + 0.3 -> WTF.js

Sequence of Unicode Characters

Multiple methods to manipulate them  

-> MDN

‘Hello’.chatAt(0) -> ‘h’

‘Hello World’.replace(‘hello’, ‘goodbye’) 

-> ‘goodbye world’

‘hello’.toUpperCase() -> ‘HELLO’

https://gist.github.com/MichalZalecki/c964192f830360ce6361
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Methods

17

Boolean
T y p e s

false, 0, ‘’ (empty string), NaN, null and undefined all

evaluate to false when comparing

All other values evaluate to true

Values are silently converted to their Boolean equivalent

when needed

18

Object
T y p e s

Function

Array

Date

RegExp

19

{ key: value }

Object
T y p e s

Array
T y p e s

const obj = new Object()

const obj = {}

Multiple methods to manipulate them  

-> MDN

Obj.firstLevel.secondLevel

Obj[‘firstLevel’][‘secondLevel’]

const arr = new Array()

const arr = []

Map, filter, reduce …

are your best friends when dealing with

arrays

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Methods

20

function getName(name) { return name; }

Function
T y p e s

const getName = (name) => { return name; }

const getName = (name) => name;

21

function Student(name) {

 this.name = name;

}

Student.prototype.greet = function () {

 console.log(`Hello ${this.name} !`)

}

const toto = new Student(‘toto’);

toto.greet();

Prototype
T y p e s

Class
S u g a r

Noticed the template strings ?

class Student {

 constructor(name) {

 this.name = name;

 }

 greet() {

 console.log(`Hello ${this.name} !`)

 }

}

const toto = new Student(‘toto’);

toto.greet();
(Student.greet.bind(toto))()

22

Global Scope: Any variable declared

outside of a function is in the global scope

Scope

Function Scope: Any variable declared in

a function can only be accessed from this

function and its nested functions. 

keyword: var

Block Scope: Introduced with ES2015,

any variable declared in a block (hint: {}),

can only be accessed from this block and

its nested blocks. 

 

keyword: let  

keyword: const same as let except it is

read-only (warning, this only applies to the

stored reference…)

Read me: What const really stands for in ES6

https://medium.com/the-node-js-collection/what-does-const-stand-for-in-es6-f7ab3d9e06fc

23

24

25Function Scope: the bad parts

26Let is block-scoped

27Const is read-only

28Well, almost read-only

29

30

Closure
S i d e E f f e c t

A c losure i s the comb ina t ion o f a func t ion ’s

scope and the cap tu red sur round ing scope

scope .

Hoist ing

The in te rp re te r w i l l t rea t dec la ra t ions f i r s t and

then fo l low ass ignments and execu t ions

31

Modern Javascript  
Useful Features

32

… <= yes, this is an operator

Rest/Spread
O p e r a t o r

Rest/ Spread

const arr1 = [1, 2, 3, 4];

const arr2 = [4, 5, 6, 7];

const arr3 = […arr1, …arr2] ;

const hasFoo = { foo: ‘foo’ };

const hasBar = { bar: ‘bar’ };

const hasFooAndBar = {

 …hasFoo,

 …hasBar

};
const add = (w, x, y, z) => {

 return Array

 .from(arguments)

 .reduce((a, b) => a + b, 0);

}

add(…arr3)

Noticed the `argument` keyword ?

33

const getState = () => ({

 name: ’square’,

 width: 150,

 height: 150

})

const logWidth = () => {

 const { width } = getState();

 console.log(width);

}

Destructurat ion Default Params

const area = ({ width: 300, height: 400 })

=> {

 return width * height;

}

area({ width: 100 }); // => 40 000

Noticed the implicit object return ?

Use it ! Using destructuring on your

functions parameters will allow you (and

your text editor) to always know what is

needed to call your function and trace

what not used anymore inside the

function !

34

An object wrapping an asynchronous task

Promise Async/Await
Await inside an async function will lock

execution until resolution

const getProm = () => new Promise(

 (resolve, reject) => {

 setTimeout(() => resolve(‘toto’), 3000));

 }

);

const log = async () => {

 const stringToLog = await getProm();

 console.log(stringToLog);

}

const prom = new Promise(

 (resolve, reject) => {

 setTimeout(() => resolve(‘toto’), 3000));

 }

);

prom

 .then((text) => console.log(text));

In the above example, `toto` will be

logged only if the promise has resolved. In

this case at least after 3 seconds

You can attach an infinity of callbacks to

the promise using .then(callback) on the

returnees object

Rejections are handled through .catch(cb)

35

Sl ides  
under maintenance

Modules

ES Modules

ES Modules

ES Modules

ES Modules

Common JS

Transpilation

• Transforms ES6 into ES5 through plugins

• Each revision of ES comes as a preset of feature syntax and
transformations

• You can use features before they get into the specification (warning:
if a feature hasn’t reached stage-4 it might never end up in the spec)

• Polyfills missing parts of older browsers (IE8…)

•

• Now that most modern browsers support most ES6 features, only
transforms what you need for your audience.

https://github.com/babel/babel-preset-env

JS as a platform
• TypeScript

• CoffeeScript

• ReasonML

• ClojureScript

• …

• Nowadays almost every existing language has a way of
being compiled to JS

Extending the
language

Go functional ?

• JavaScript has the basic paradigms for functional
programming (lambas, closures, functions as data)

• It can easily be improved in that direction by adding
static typing and better immutability

TypeScript && FlowType
• (Language)

• is a superset of JS

• compiles to JS (using its own compiler)

• (annotations)

• Based on OCaml compilation chain

• adds on existing JS

• syntax and transformations plugins available on Babel

https://www.typescriptlang.org/
https://github.com/flowtype/flow-typed

Advantages of adding static
types to your JS

• Enforces conventions

• Most errors are caught at compilation time

• Less defensive code

• Provides various immutable data types, such as:

• List

• Map

• Record

• Set

https://facebook.github.io/immutable-js/

Packaging

NPM

• Is a repository available on (anyone can
publish)

• Is a tool shipped with NodeJS

• package.json

• node_modules

http://npmjs.com

NPM

• Quantity of packages is plethoric

• Quality of packages is poor

• Is “slow”

• Does not work offline

Yarn: the new kid in town

• Backward compatible with NPM (through
package.json)

• Fast (local cache, parallelism,…)

• Deterministic / Reliable (yarn.lock)

Bower

• Was thought as a front-end dependency manager

• Slowly vanishing from the landscape in favour of
NPM/YARN

– David Haney (@haneycodes)

“The more dependencies you take on, the more
points of failure you have”

Front End

Window and Document

• window represents the current opened window/tab

• document represents the current webpage and its
tree

Main APIs
• document.getElementById(id)

• element.getElementsByTagName(name)

• document.createElement(name)

• document.querySelector(query)

• document.querySelectorAll(query)

• parentNode.appendChild(node)

Main APIs
• element.innerHTML

• element.style

• element.setAttribute

• element.addEventListener

• window.onload

• window.pageXOffset

Modularity
• es-imports are not yet implemented in browsers (will

they, ever ?)

• Sometimes you can not rely on a bundler

• import your scripts in dependant order (or not ?)

• use the window object to namespace your application

• hint: window.namespace = window.namespace || {}

Reflows and Repaints

• A great power comes with a great responsibility

• Even though optimised, the browser tends to feel
like an artist and paint whatever it thinks has
changed

• DocumentFragment

Network bottlenecks

• The worst pain in front-end performance

• Ship as less code as you can

• Cache as much as you can

Fetch API
• Comes as a replacement for old fashioned XHR

• Simple API

• Returns a Promise

Readme:

https://github.com/github/fetch

67

Persons of Interest

C o - F o u n d e r o f B r a v e b r o w s e r . C o -
F o u n d e r o f M o z i l l a , C r e a t o r o f
J a v a s c r i p t

B r e n d a n E i c h
@BrendanEich

S o f t w a r e E n g i n e e r , O p e n W e b
E v a n g e l i s t , W r i t e r o f Yo u D o n ’ t K n o w
J a v a s c r i p t

K y l e S i m p s o n
@getify

S e n i o r a r c h i t e c t a t P a y p a l , T r o u b l e
m a k e r , W r i t e r o f J a v a s c r i p t t h e G o o d
P a r t s

D o u g l a s C r o c k f o r d

https://github.com/getify/You-Dont-Know-JS
https://github.com/getify/You-Dont-Know-JS
https://archive.org/details/javascriptgoodpa00croc_0
https://archive.org/details/javascriptgoodpa00croc_0

68

Reads

T h e Tw o P i l l a r s o f J a v a s c r i p t

J a v a s c r i p t : T h e G o o d P a r t s

Yo u D o n ’ t K n o w J a v a s c r i p t (s e r i e s)

D o u g l a s C r o c k f o r d

E r i c E l i o t t

K y l e S i m p s o n

M o z i l l a D e v e l o p e r N e t w o r k

https://medium.com/javascript-scene/the-two-pillars-of-javascript-ee6f3281e7f3
http://shop.oreilly.com/product/9780596517748.do
https://github.com/getify/You-Dont-Know-JS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/getify/You-Dont-Know-JS

69

“You wanted a banana
but what you got was a

gorilla holding the
banana and the entire

jungle.”
J o e A r m s t r o n g a b o u t O O P

70

“Always bet on
Javascript”

B r e n d a n E i c h

