

Head of Engineering @ eMoteev

former MTI && ACU @ EPITA

|l ntro

V4

QUENTIN PRE

This is a just a text holder in which you assume that | wrote a lot of

interesting things, which obviously | have not.

If you can’t read it easily, you are too far away, get closer to the scene.

If you still have difficulties reading this, raise your hand and ask your
qguestion.

RULES

You are encouraged to make mistakes,

EFFORT

You are forbidden to make faults. Do not expect knowledge to fall into your

hands.

FOCUS ASK

If you do not intend to follow the lecture, No question makes you stupid,

assume consequences for your actions Asking no questions though...
and stay home.
note: your question might get answered

You don’t need your laptop outside of by another question.

tutorials.

—
ah
LLI
—
—
—
-l
<

>-
A
O
—
2
1
LL
O

early
web

Flash

Javascript

(netscape)

N

1990 1995 1996 1997 1998 1999

2elTJ2@15_ H

CGl | pHP

Apache
HT TP server

AJAX

(Microsoft)

L

JSON
|

dotcom
bubble

crash

|
REST

History

The Web

A few events to have in mind

ECMA2015
Google Chrome ESE
+ v8 |
Android CommondJS
IPhone ReactJS
AngularJS _
JQuery T I—I asm.js
| | | - B

nginx

Ruby On
Rails

j(TOO 2001 2002 2003 2004 2005 2006 2007 2908 2009 2010 2011 2012 2013

npﬂm g

node.js grun docker
: t .
express.|s cuinplle-to-
Js

VVCUSOUI\CL

fo

BRENDAN
EICH

1995 at Netscape to bu
Mocha

IN

Took 10 days

ipt 7
Ipt

iveScr
JavaScr

(because “Java” was the most successful language at the time...)

L

PREHISTORY

PRE-ESG

A brief history of the multiple branches of Javascript

2007
2000 2003
| As the AS3
Development of ES4 is — Development of ES4 is
aborted implementation in
started

SpiderMonkey is

stalled

1998 But, 2005 2007
ECMASCRIPT 2 Microsoft. .. Yahoo, Google and
- C§ Microsoft release
1999 Javascript 3.1
ECMASCRIPT 3

TC-39

A COMITTEE

Made of open source contributors and engineers
from browser manufacturers and major web actors

(Mozilla, Apple, Microsoft, Google...)

SPECIFIYNG

They identify needs, write the specs for ECMA-262

and maintain and update this specifications.

OVERVIEWING

The implementation of the standard

JOURNEY OF A FEATURE REQUEST FOR ECMA-262

Stage 0O
(Strawman)
A Contributor or Member of
TC39 thinks it’s a good idea

and writes a first document

describing the feature spec

T

o

o

STAGE 1
(proposal)

TC-39 agrees the idea is

worth pursuing

STAGE 2
(draft)

A First revision of the
feature spec is written,
2 experimental
implementations are

launched

STAGE 3
(candidate)

Finishing feature spec, and
gets enriched with
feedbacks from

iImplementations and users.

STAGE 4
(Finished)

The feature specification is
finished,
The feature will be an
official part of the language
on the next revision of

ECMA-262

2009 - 2015

ES6 and Beyond

ES6 === ES2015
ES7 === ES2016

ES8 === ES2017

http://www.ecma-international.org/ecma-262/6.0/

S
o -
c
: I ;
© e o
L. e — .-u
= = :
= =
S . Q1 B
2 &
9b = “ v
O e O | D
O =2 [| =
A & Ll mo
S5 L |& S
= B e &)
O P (I 3 : - ot
D — ¢ ks &
» O 0 W @
© HE C o 2 B
S 9 D 42 — 3 E s
| C S -Je !m nnu
Ew Og]S 4—”
n_Ln._ © VJ d.m. 2/A o
c 5 ~ L & s 8 U X =
B@ .m O 3“ g & I
o O @ s
\‘ m, Sm O g m <
H‘_’\-.. m.lsu - ,mo = 0
2 o = C < "l* s (o BN

avascript 101

\

AN

Functional Dynamic Object-oriented
Javascript has all the paradigms for Javascript offers OOP paradigms via
functional programming Prototype inheritance

o

Just-In-Time Everywhere
Browsers will compile JS to bytecode Javacript is present in the browser, on the
ahead of time, allowing for performance server, in loT, in watches...

boosts

Ty pes

Number

@ Double-precision on 64-bits values

@ No Integer type

@ Math module provides common functions

(cos, sin...) and constants (PI)

@ NaN for Not A Number -> hint; avoid it

@ parselnt(value: String, base: Number) ->
Number

careful: parselnt(‘toto’, 10) returns NaN

@ 0.1 + 0.3 > WTE,s

Ty pes

String

@ Sequence of Unicode Characters
@ ‘Hello’.chatAt(0) -> ‘i’

@ ‘Hello World'.replace(‘hello’, ‘goodbye’)

-> ‘goodbye world’

@ ‘hello’.toUpperCase() -> ‘HELLO’

@ Multiple methods to manipulate them
-> MDN

https://gist.github.com/MichalZalecki/c964192f830360ce6361
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Methods

Types

Boolean

@ Values are silently converted to their Boolean equivalent

when needed

@ false, O, " (empty string), NaN, null and undefined all

evaluate to false when comparing

@ All other values evaluate to frue

Types Types

Object Array

e = @ key: value } @ const arr = new Array()
o @ const obj = new Object() @ const arr = ||
" J‘ .
g 5;':.3 ‘ @ const obj = {} @ Map, filter, reduce ...
' - are your best friends when dealing with
. g | @ Obj.firstLevel.secondLevel arrays
o B 5 - :
| @ Obj[firstLevel’][‘secondlLevel’] @ Multiple methods to manipulate them
-> MDN

R
L

B R

?_ ' \\
o% L ‘\u
f v

ST
0 b
o

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#Methods

Ty pes

Function

@ function getName(name) { return name, }
@ const getName = (name) => { return name; }

@ const getName = (name) => name;

Ty pes

Prototype

@ function Student(name) {

this.name = name;

/

1 O

i

"..

"._"..
e
h-”

1l
2

2k

Student. prototype.greet = function () {

console.log(Hello ${this.name} !")

/

I
§
B 3

const toto = new Student(‘toto’),

ufnﬁi',,. ;

toto.greet();

-

@ (Student.greet.bind(toto))()

Sugar

Class

@ class Student {

constructor(name) {

this.name = name;

/
greet() {

console.log("Hello ${this.name} I")

/
/

const toto = new Student(‘toto’);

toto.greet(),

@ Noticed the template strings 7

Scope

@ Global Scope: Any variable declared

outside of a function is in the global scope

@ Function Scope: Any variable declared in
a function can only be accessed from this
function and its nested functions.

keyword: var

@ Block Scope: Introduced with ES2015,
any variable declared in a block (hint: {}),
can only be accessed from this block and

its nested blocks.

keyword: /et

keyword: const same as /et except it is

read-only (warning, this only applies to the

stored reference...)

@ Read me: What const really stands for in ES6

https://medium.com/the-node-js-collection/what-does-const-stand-for-in-es6-f7ab3d9e06fc

var foo ‘bar';
console. log(foo);

function () {
var toto = 'tata’;

console.log(toto);
console. log(foo);

}

console. log(toto);

(function iife() {
console. log('toto"');

H ()

Life();

for (var 1 = 0; 1 <= 10;
console.log(1);

}

console. log(1);

for (let 1 = 0; 1 <= 10;
console.log(1);

}

console. log(1);

const toto = 'foo';

toto = 'bar';

const foo = { one: 'one' };

foo.two "two ' ;

foo.one un';

Side E ffect

Closure

A closure is the combination of a function’s
scope and the captured surrounding scope

scope.

Hoisting

The interpreter will treat declarations first and

then follow assignments and executions

function makeAdder(x) {
return function(y) {
return x + y;
}s
}

var add5 = makeAdder(5);
var addl® = makeAdder(10);

console.log(add5(2));
console.log(add10(2));

)

function fun() {
foo();
bar();

var foo = function () { console.log('foo'); };
function bar() { console.log('bar'); };

}

function fun() {
var foo;

function bar() { console.log('bar'); };

foo();
bar();

foo = function () { console.log('foo'); };

Modern Javascript
Useful Features

Operator

Rest/Spread

@ ... <= Vyes, this is an operator

@ constarr! =[1, 2, 3, 4];
constarr? = [4, 5, 6, 7];

constarr3 =[...arrl, ...arr2] ;

@ constadd = (w, x, y, z) => {
return Array

.from(arguments)
reduce((a, b) =>a + b, 0),

add(...arr3)

Rest/ Spread

@ const hasFoo = { foo: foo’ };

const hasBar = { bar: ‘bar’ };
const hasFooAndBar = {

...hasFoo,

...hasBar

@ Noticed the "argument keyword 7

Destructuration Default Params

@ const getState = () => ({ @ const area = ({ width: 300, height: 400 })
, , =>{
name: square’
width: 150 return width * height;
height: 150 /
/)

area({ width: 100 }); // => 40 000

Use it I Using destructuring on your
const logWidth = () => {

functions parameters will allow you (and
const { width } = getState();

your text editor) to always know what is
console.log(width); .
a() needed to call your function and trace
what not used anymore inside the

function !

@ Noticed the implicit object return ?

Promise Async/Awalit

. /‘1 " @ An object wrapping an asynchronous task
b \

@ Await inside an async function will lock

" ;/ 'f 1\ 4

, execution until resolution
@ const prom = new Promise(

(resolve, reject) => {

@ const getProm = () => new Promise(
setTimeout(() => resolve(‘toto’), 3000)),

(resolve, reject) => {

setTimeout(() => resolve(‘toto’), 3000)),

prom

then((text) => console.log(text)); const log = async () => {

S const stringloLog = await getProm();
@ In the above example, toto will be

. . console.log(stringTolLog),
logged only if the promise has resolved. In

this case at least after 3 seconds

M @ You can attach an infinity of callbacks to
i the promise using .then(callback) on the

returnees object

@ Rejections are handled through .catch(cb)

-
o
| —

© . m — \‘“

Slides
under maintenance

Vlogules

FS Modules

const PI = 3.14;

export const add = (x, y)
export const sub = (x, y)

export default add;

import * as Lib from 'lib‘;

console. log(Lib.add(2, 3));

console. log(Lib.default(2, 3));

FS Modules

const PI = 3.14;

export const add = (x, y)
export const sub = (x, y)

export default add;

import * as Lib from 'lib‘;

console. log(Lib.add(2, 3));

console. log(Lib.default(2, 3));

FS Modules

const PI = 3.14;

export const add = (x, y)
export const sub = (x, y)

export default add;

import { sub } from 'lib’;

console.log(sub(2, 3));

FS Modules

const PI = 3.14;

export const add = (x, y)
export const sub = (x, y)

export default add;

import foo from 'lib’';

console. log(foo(2, 3));

Common JS

const PI = 3.14;

const add = (x, y)
const sub = (x, y)

modu le.exports =
add,
sub,

};

const { add } = require('lib"');

console. log(add(2, 3));

Transpilation

intl | non-standard compatibility table

s~ Show unstable platforms BMvs M spiderMonkey M javaScriptCore EMChakra M Carakan KIS Other

Minor difference (1 point) Small feature (2 points) Medium feature (4 points) Large feature (8 points)
Compilers/polyfills Desktop browsers Servers/runtimes
97% 56% 71% 48% 59% 18% 5% 1% 83% 93% 95% 86% 94% 97% 97% 97% 97% 97% 97% 100% 100% 100% 100% 4% 66% 96% 59% 52% 97%
Type-
Current Babel + Script es6- KQ Edge FF 45 FF 53 FF 54 FF 55 CH58, CHS59, SF Echo Node
browser TToCUr rejsl2) Closure shim 4143 'E11 154 | ESR "°% Beta Aurora Nightly opasil opasll > C 104 70 WKOOPS e X6
core-js
[E—

I 0 0 2 N I 72 72 2 220 0 N W 0 I R 2 2
45 [09 [9 | ws | o5 [os [os | s | =5 [es | ss |5 [ms | e [es | ws [es | s | ws | ws [es s o
BN I R N T T P o PR R o N

O
~
O
-
=
O

£
i

s N
-- 0 NN T o i R

s [--m-——-- 33 [s
KN
“on

S

20/22
23/24
19/23

21/22
24/24
20/23

/24
/23

LﬂU’lQKD
N1 S~
nmnjpum| s~ |0

vl L S
N BU'lU'lb

m o2 | o
--“-m--------

e | e | e | o | e e [ve [ve | ve [Nl o | ve [Ve | Ve | Ve | e [Ve | Ve | e | ve |

s [“on [ona [ens | o> | o> |ona | s | i [sMe 1ana | iana | she | ana | e | ana | iats | rara | ana
IR I 2 I K N N 22 N 2220 2 2 T 2 20 T
BECH i N N T T T T TN T

s | vons [T vons |5 | oo [ahe| vars | vano | veme | vars [| vane | vene | veme | ron | vens | e | rans
s | vons | vris | vors | s | ono {8 | vare | vano | deme | vare [| sae | vene | vems | rano | vens | e | ans
NGREN| 22 | o [z | ova | ono [JeABN] v | e | e | o e e | vana | ans | varis | o | e | o
1720 AT 20 I AR I S 2 KO 0 20 2 I 20 0
N I K I I N R I 0 R o e [e e
I 0 0 R 0 N N N 0 R 0 2 I 2 0
WEEN| ws | e [ws | s oo |os | ws | ws [we | ws [ee [me | ws | we | o | we | @ fes]
o [BUBEN 2 [58A o | o | onc ([Noe | Ni0EEN RN e | oo | aaas | aaas | aume | 2525 | aume | 3w | 25n0 n5

we W e | ae [s SO e | e | we | ws | wm | ws | ws | wa | e | e | we | e | ws | a | an
78 EECNNEON N NN NN NP N T - RN EN - - - 3 e N

9/10 7/10 9/10 7/10 0710 | 010 10/10 10/10 10/10 10710 110110 | 10410 10/10 10/10 10/10 10/10 10410 | 10/10 | 10710 11040 1 104101 0110

0

=
N

w

1116

128201242 0/12

-t

-—h
@ Sle|S|2 - oleS|SIS|e|e]|e
a gl |IBElw (=) NN N R S

i

24/2

»

2712

~
~

N N < N
HH ECOHE GEH EEEHEOOEEEE

46/4
1971
1971
1212
1111
34/34
20/20

g

EIEIIII! IEIE HEH HEEEEEHEHHE

0N
01

O

19/19 | 191
19/19 | 191
12112 | 12/
T 1A 0/11

O

o
e
—
N

=
N | W@
o| &

20/20 | 20/20

03
o

/8
/12
0/26

E
H

12112
26/26

-t
®
-
N

3

o
=
!

1717 | 1717

w
~
-t
~

H
N

/2

BEE H
s

G on | on | an |
(55 (o5 [s =5 |
s [R] ors [s |

o
L
(o))

S

/4
5/5
0/5
/22
0/24
0/23

_I
2| o2 | o2 | 22 |

s |e] o5 |
ona [RENBR e |
o e [e |

124 24124

=~
)

(Sl B E L B B N (o)}
S

N

19/22
24/24 | 21/24
23/23 | 18/23

o

24724

BB
H

N

b
[= g | B E B
3 R N N|a|s|s|o

16/16
12112

0/

_A

3

N
o

)
£
N
B

-—d] A
kOkOg oo
<|= =~
- | =
O | O

8
27/27

/8
0/27

27/27

N

O

0/27

-
gl
ES

46/46
19/19
19/19
1212
1111

/46 | 46/46
1871
1871
1n
/1
0/34
0720 0/20
8/ /8 7/8

12112 | 12112 0712

m 25/26 | 22126 | 3126

43/46
17/19
17119
11112
10711
0/34

O

=
=
~
=
N
N

-—

o

=

N -i
o —
-l

o o

—

- | W
A I
w
i-S

20/20

®
)

g
Aaditaee o2

1212
26/26

II

4/4 4/4
6/17 1717
2/
19101 10110 |1 10101 10110 10/10

S~
—_
~

E
~

I
fonz | 7 |
|2 | » |

Transforms ES6 into ESS through plugins

—ach revision of ES comes as a preset of feature syntax and
transformations

You can use features before they get into the specitication (warning:
if a feature hasn't reached stage-4 it might never end up in the spec)

Polyfills missing parts of older browsers (IES8...)

¥ Evaluate Presets: es2015, react, stage-2 + @ Line Wrap 8 Minify (Babili) Babel 6.24.0

1 1 "use strict";

2 2

3 const mul2 = a => a % 2; 3 wvar _console;

4 4

5 «const arr = [1, 2, 3, 4]; 5 function _toConsumableArray(arr) { if (Array.isArray(
6 6

7 const doubles = arr.map(item => mul2(item)); 7~ var mul2 = function mul2(a) {

8 8 return a * 2;

9 console.log(...doubles); 9 X

10 10

11 11 var arr = [1, 2, 3, 4];

1. 12

13 13 ~ var doubles = arr.map(function (item) {

14 14 return mul2(item);

15 I5E 1) ;

16 16

17 17 (_console = console).log.apply(_console, _toConsumabl
18

-
(Lo

"presets": [
["env", {
"targets": {
"browsers'": ["last 2 versions", "safari >= 7"]
}
}]
]
}

 Now that most modern browsers support most ES6 features, only
transforms what you need for your audience.

https://github.com/babel/babel-preset-env

JS as a platform

TypeScript
CoffeeScript
ReasonML

ClojureScript

Nowadays almost every existing language has a way of
being compiled to JS

Extending the
language

(o functional 7

o JavasScript has the basic paradigms for functional
programming (lambas, closures, functions as data)

* |t can easily be improved In that direction by adding
static typing and better immutabillity

TypeScript && Flow Type

. (Language)

TypeScript

* |S asuperset of JS ES6

ESS

e compiles to JS (using its own compiler)
. (annotations)

 Based on OCaml compilation chain

* adds on existing JS

e syntax and transformations plugins available on Babel

https://www.typescriptlang.org/
https://github.com/flowtype/flow-typed

Advantages of adding static
types to your JS

* Enforces conventions
 Most errors are caught at compilation time

e | ess defensive code

* Provides various iImmutable data types, such as:
o | st
 Map

e Record

¢ Set

https://facebook.github.io/immutable-js/

?.
Y

. A

Packaging

NPM

|Ss a repository avallable on (anyone can
publish)

|s a tool shipped with NodedS
package.|son

node modules

http://npmjs.com

NPM

Quantity of packages is plethoric
Quality of packages is poor
s “slow”

Does not work offline

Yarn: the new kid In town

o Backward compatible with NPM (through
package.json)

» Fast (local cache, parallelism,...)

o Deterministic / Reliable (yarn.lock)

Bower

* \Was thought as a front-end dependency manager

o Slowly vanishing from the landscape in favour of
NPM/YARN

"The more dependencies you take on, the more
points of failure you have”

— David Haney (@haneycodes)

Front ENaA

Window and Document

o window represents the current opened window/tab

 document represents the current webpage and its
lree

Main APIs

document.getElementByld(id)
element.getElementsByTagName(name)
document.createElement(name)
document.querySelector(query)
document.querySelectorAll(query)

parentNode.appendChild(node)

Main APIs

element.innerHTML
element.style
element.setAttribute
element.addEventListener
window.onload

window.pageXOftset

Moaularity

es-imports are not yet implemented in browsers (will
they, ever ?)

Sometimes you can not rely on a bundler
import your scripts in dependant order (or not ?)
use the window object to namespace your application

hint: window.namespace = window.namespace Il {}

Reflows and Repaints

* A great power comes with a great responsibility

* Even though optimised, the browser tends to feel
Ike an artist and paint whatever it thinks has
changed

 DocumentkFragment

Network bottlenecks

 [he worst pain In front-end performance
e Ship as less code as you can

 Cache as much as you can

Fetch AP

 Comes as a replacement for old tashioned XHR
e Simple API

e Returns a Promise

fetch('https://api.hearthstonejson.com/v1/18336/frFR/cards. json")

.then((response) => response.json())

.then(obj => console.log(obj))

Readme:

https://github.com/github/fetch

Persons of Interest

Douglas Crockford

Senior architect at Paypal, Trouble
maker, Writer of Javascript the Good

Parts

Brendan Eich
@BrendanEich

Co-Founder of Brave browser. Co-
Founder of Mozilla, Creator of
Javascript

Kyle Simpson
@getify

Software Engineer, Open Web
Evangelist, Writer of You Don’t Know

Javascript

https://github.com/getify/You-Dont-Know-JS
https://github.com/getify/You-Dont-Know-JS
https://archive.org/details/javascriptgoodpa00croc_0
https://archive.org/details/javascriptgoodpa00croc_0

Reads

(>) The Two Pillars of Javascript Eric Eliott
@ Javascript: The Good Parts Douglas Crockford
@ You Don’t Know Javascript (series) Kyle Simpson

@ Mozilla Developer Network

https://medium.com/javascript-scene/the-two-pillars-of-javascript-ee6f3281e7f3
http://shop.oreilly.com/product/9780596517748.do
https://github.com/getify/You-Dont-Know-JS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/getify/You-Dont-Know-JS

“You wanted a banana
but what you got was a
gorilla holding the
banana and the entire
jungle.”

Joe Armstrong about OOP

-
O
el
D
L
7
>
©
=
<

t!!

P

Javascr

1Ch

Brendan E

