

Head of Engineering @ eMoteev

former MTI && ACU @ EPITA

|l ntro

V4

QUENTIN PRE

This is a just a text holder in which you assume that | wrote a lot of

interesting things, which obviously | have not.

If you can’t read it easily, you are too far away, get closer to the scene.

If you still have difficulties reading this, raise your hand and ask your
qguestion.

RULES

You are encouraged to make mistakes,

EFFORT

You are forbidden to make faults. Do not expect knowledge to fall into your

hands.

FOCUS ASK

If you do not intend to follow the lecture, No question makes you stupid,

assume consequences for your actions Asking no questions though...
and stay home.
note: your question might get answered

You don’t need your laptop outside of by another question.

tutorials.

State Management

What the Flux

Applications are gaining in complexity

t's getting hard to keep track of what, why and how something
nappens.

Facebook’s Flux relies on unidirectional data flow

Redux takes inspiration (even though it's not a strict
implementation of it)

http://facebook.github.io/flux/

Redux: Inree Principles

DISPATCH

{current state}
{action}

* Single Source of Truth: There is a single state, in a single store.

» State is read-only: the only way to change state is to dispatch
an action with will spawn a new state.

* Changes are made with pure functions: aka ‘reducers’

WITHOUT REDUX WITH REDUX

(O COMPONENT INITIATING CHANGE

A basic Redux app

import { createStore } from 'redux’

function counter(state = 0, action) {
switch (action.type) {
case 'INCREMENT':
return state + 1
case 'DECREMENT':
return state - 1
default:

return state

let store = createStore(counter)
store.subscribe(() => console.log(store.getState()))

store.dispatch({ type: 'INCREMENT' })
store.dispatch({ type: 'INCREMENT' })
store.dispatch({ type: 'DECREMENT' })

http://redux.js.org/#the-gist

Reducers

import { combineReducers, createStore } from ’'redux’;

 Reducers are pure functions

const dumb = (state = [], action) => state;

o They return a new state. const dumber = (state = [], action) => state;
CombineReducers let rootReducer = combineReducers([
dummy,
counter,

e A reducers name will be the 1.
key to access its state from the
store. let store = createStore(rootReducer);

const { dumb, dumber } = store.getState();

Action Creators

const PICTURE_ADD = "PICTURE_ADD";

* Actions are objects

W|th d type f|e‘d function addPicture(data) {
return {
e Action Creators are ;Zf: A,
functions returning };

actions J
const data = { src: 'https://serv.er/picture/123' };
e |SEe dispatch to store.dispatch(addPicture(data)):
propagate your
actions.

Action Creators

const PICTURE_ADD = "PICTURE_ADD";

* Actions are objects

W|th d type f|e‘d function addPicture(data) {
return {
e Action Creators are ;Zf: A,
functions returning };

actions J
const data = { src: 'https://serv.er/picture/123' };
e |SEe dispatch to store.dispatch(addPicture(data)):
propagate your
actions.

al
fu

Redux-thunk

Redux-thunk is a
middleware for Redux, it

OwsS you to return

nctions instead of

actions in your Action
Creators.

The returned function
will be given (dispatch,

getState) as arguments.

Use It to tame

asynchrony in your app.

const REQUEST_PICTURE "REQUEST_PICTURE';
const RECEIVE_PICTURE = 'RECEIVE_PICTURE';

(data) => ({ type: RECEIVE_PICTURE, data });
() => ({ type: REQUEST_PICTURE });

const receivePicture

const requestPicture

funtion fetchPicture(picIld) {
return (dispatch, getState) => {
dispatch(requestPicture());

fetch("https://serv.er/pictures/${picld}")
.then(() => dispatch(receivePicture));

store.dispatch(fetchPicture(123));

https://github.com/gaearon/redux-thunk

Debug

e https://github.com/zalmoxisus/redux-devtools-
extension

https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension

-, B IS
" x‘

e

) ,

3" Y

I.‘:‘\:\'.. .- X . ™ .-:-"?-.:. ..

ooooo

react-redux

. defines
contains

triggers

Reducer Actions
sent to

* NPM package react-redux

* Allows you to connect your React app to your Redux store

https://github.com/reactjs/react-redux

<Provider />

- Provider is a React ReactDOM. render(

Component <Provider store={store}>
<App />
* |t provides an access </Provider>,
to the store to all its ~00tE]l
children)

e Therefore it must be
at the top of your tree

https://github.com/reactjs/react-redux/blob/master/docs/api.md#provider-store

connect

Connect gives you a Higher
Order Component, give it
your component and get a
connected component

You can use it to cherry pick
relevant informations from
the App state to pass to
your connected component
as Props

A common pattern is to
have “Controller
Components” or (layouts,
container...) connected to
the state, that pass
information to dummy
components via props

export default connect() (Component)

function mapStateToProps(state, ownProps) {

const pic = state.pictures.find(p => p.id === ownProps.id);

return { ...pic };

export default connect(mapStateToProps) (Picture);

export default connect(state => state)(Component);

https://github.com/reactjs/react-redux/blob/master/docs/api.md#connectmapstatetoprops-mapdispatchtoprops-mergeprops-options

re act-redux

HOOKS

- useStore() -> get a reference on the root state for nearest <Provider />
- useDispatch() -> get a reference to a dispatch function for the nearest <Provider />

- useSelector(fn) -> works as useStore, but allows you to get a specific part of the state via fn

Persons of Interest

Jordan Walke

@jordwalke

Christopher Chedeau

@vjeux

Co-creator of React Native and Prettier.
Creator of “CSS-in-JdS".
Former EPITA.

Creator of React, ReasonML.

Cheng Lou

@_chenglou Dan Abramov

Member of React’s core team at @dan_abramov
Facebook
Co-creator of Redux, core-maintainer of

React at Facebook

If you have a problem with the tools you use:

From the creator of 6t05 (now BabeldS):

ks Sebastian McKenzie & @sebmck - Apr 26
Replying to @sebmck
‘ To all the people that took this thread as an invite to vent your frustrations over
Babel performance or criticize me: please go eat a brick

From the creator of Clojure

B8 Rich Hickey

; 2+ Suivre
I @richhickey

f you think you know how | ought to spend my
time, come over and mow my lawn while |
expound on the problems of dev entitlement
culture.

Stop complaining and get to work.

