A Exercices

A.1 Polarisation

On a vu que l'on pouvait utiliser une notation complexe pour représenter le champ électrique associé à une onde électromagnétique progressive :

$$\begin{split} E_x(t) &= E_{0x} \, \cos(\omega t - \delta_x) = \text{Re} \left[E_{0x} \, e^{i\delta_x} \, e^{-i\omega t} \right] = \text{Re} \left[\mathcal{E}_x \, e^{-i\omega t} \right] \\ E_y(t) &= E_{0y} \, \cos(\omega t - \delta_y) = \text{Re} \left[E_{0y} \, e^{i\delta_y} \, e^{-i\omega t} \right] = \text{Re} \left[\mathcal{E}_y \, e^{-i\omega t} \right] \end{split}$$

Soient deux nombres, λ réel et μ complexe, paramétrés par

$$\lambda = \cos \theta \qquad \qquad \mu = \sin \theta \, e^{i\delta_y}$$

Un polariseur (λ, μ) est constitué de trois éléments :

• Une première lame biréfringente qui déphase \mathcal{E}_y de $-\eta$ en laissant \mathcal{E}_x inchangé soit

$$\mathcal{E}_x \to \mathcal{E}_x^{(1)} = \mathcal{E}_x \quad \text{et} \quad \mathcal{E}_y \to \mathcal{E}_y^{(1)} = \mathcal{E}_y e^{-i\eta}$$

• Un polariseur linéaire qui projette suivant \hat{n}_{θ} selon

$$\mathcal{E}^{(1)} \to \mathcal{E}^{(2)} = \left(\mathcal{E}_x^{(1)}\cos\theta + \mathcal{E}_y^{(1)}\sin\theta\right)\,\hat{n}_\theta = \left(\mathcal{E}_x\cos\theta + \mathcal{E}_y\sin\theta\,e^{-i\eta}\right)\,\hat{n}_\theta$$

• Une seconde lame biréfringente qui laisse $\mathcal{E}_x^{(2)}$ inchangé et déphase $\mathcal{E}_y^{(2)}$ de η soit

$$\mathcal{E}_x^{(2)} \to \mathcal{E}_x' = \mathcal{E}_x^{(2)} \quad \text{et} \quad \mathcal{E}_y^{(2)} \to \mathcal{E}_y' = \mathcal{E}_y^{(2)} \, e^{i\eta}$$

La combinaison des trois opérations est représentée par $\mathcal{E} \to \mathcal{E}'$.

1. Calculer les composantes \mathcal{E}_x' et \mathcal{E}_y' en fonction de \mathcal{E}_x et \mathcal{E}_y .

 $\underline{\operatorname{Solution}}$: Les composantes de \mathcal{E}'_x et \mathcal{E}'_y sont données par

$$\mathcal{E}'_{x} = \mathcal{E}_{x} \cos^{2} \theta + \mathcal{E}_{y} \sin \theta \cos \theta e^{-i\eta} = |\lambda|^{2} \mathcal{E}_{x} + \lambda \overline{\mu} \mathcal{E}_{y}$$
$$\mathcal{E}'_{y} = +\mathcal{E}_{x} \sin \theta \cos \theta e^{i\eta} + \mathcal{E}_{y} \sin^{2} \theta = \overline{\lambda} \mu \mathcal{E}_{x} + |\mu|^{2} \mathcal{E}_{y}$$

2. On décide de représenter les polarisations \mathcal{E} et \mathcal{E}' par des vecteurs, que l'on note $|\mathcal{E}\rangle$ et $|\mathcal{E}'\rangle$, qui s'expriment dans la base orthogonale $\{|x\rangle, |y\rangle\} = \{\left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right)\}$ selon

$$|\mathcal{E}\rangle = \mathcal{E}_x|x\rangle + \mathcal{E}_y|y\rangle$$
 et $|\mathcal{E}'\rangle = \mathcal{E}'_x|x\rangle + \mathcal{E}'_y|y\rangle$

Déterminer la matrice \mathcal{P} telle que $|\mathcal{E}'\rangle = \mathcal{P} |\mathcal{E}\rangle$.

Solution: Cette opération s'écrit

$$\begin{pmatrix} \mathcal{E}'_x \\ \mathcal{E}'_y \end{pmatrix} = \mathcal{P} \begin{pmatrix} \mathcal{E}_x \\ \mathcal{E}_y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mathcal{E}_x \\ \mathcal{E}_y \end{pmatrix} = \begin{pmatrix} a \, \mathcal{E}_x + b \, \mathcal{E}_y \\ c \, \mathcal{E}_x + d \, \mathcal{E}_y \end{pmatrix} = \begin{pmatrix} |\lambda|^2 \, \mathcal{E}_x + \lambda \overline{\mu} \, \mathcal{E}_y \\ \overline{\lambda} \mu \, \mathcal{E}_x + |\mu|^2 \, \mathcal{E}_y \end{pmatrix}$$

donc $\{a, b, c, d\} = \{|\lambda|^2, \lambda \overline{\mu}, \overline{\lambda} \mu, |\mu|^2\}.$

A.2 Cryptographie

Alice envoie un bit 1 grâce à un photon polarisé selon \uparrow et celui-ci est intercepté par Eve. Si celle-ci utilise, par chance, la base de réception correcte, c'est-à-dire \longleftrightarrow , elle a alors 100% chance de détecter de trouver la valeur (correcte) 1 envoyer par Alice. En revanche, si Eve utilise la base de réception \nwarrow , alors elle aura seulement 50% de chance de trouver cette valeur correcte. La probabilité, notée P, pour Eve de mesurer la valeur correcte envoyée par Alice est donc

$$P = \frac{1}{2} \left(1 + \frac{1}{2} \right) = \frac{3}{4} = 75\%$$

On suppose maintenant que la base de réception de Eve fait un angle ϕ , au lieu de $\pm 45^{\circ}$, par rapport à l'axe Ox.

1. Montrer que la probabilité P_{ϕ} de succès pour Eve de mesurer le bit ${\bf 1}$ est maintenant

$$\mathsf{P}_{\phi} = \frac{1}{4} \Big(2 + \cos(2\phi) + \sin(2\phi) \Big)$$

Solution: Si Alice envoie un bit 1 avec une polarisation selon \uparrow alors il y a deux possibilité de polarisation. Soit selon $+90^{\circ}$ soit selon -45° . Comme Eve a une base qui fait un angle ϕ avec l'axe Ox alors, par projection, la probabilité de faire une mesure correcte est $\cos^2 \phi$. Si Alice envoie une polarisation selon -45° alors cette probabilité devient $\cos^2(\frac{\pi}{4} - \phi)$. On écrit alors

$$\begin{split} \mathsf{P}_{\phi} &= \frac{1}{2} \left\{ \cos^2(\phi) + \cos^2\left(\frac{\pi}{4} - \phi\right) \right\} \\ &= \frac{1}{2} \left\{ \frac{1}{2} [1 + \cos(2\phi)] + \left[\cos(\phi) \cos\left(\frac{\pi}{4}\right) + \sin(\phi) \sin\left(\frac{\pi}{4}\right) \right]^2 \right\} \\ &= \frac{1}{2} \left\{ \frac{1}{2} [1 + \cos(2\phi)] + \frac{1}{2} \left[\cos(\phi) + \sin(\phi) \right]^2 \right\} \\ &= \frac{1}{4} \Big(2 + \cos(2\phi) + 2\cos(\phi) \sin(\phi) \Big) \\ \mathsf{P}_{\phi} &= \frac{1}{4} \Big(2 + \cos(2\phi) + \sin(2\phi) \Big) \end{split}$$

2. Montrer que pour un choix d'angle optimal $\phi = \phi_0$, que l'on déterminera, on obtient une probabilité de succès supérieur à 75% (il n'est pas nécessaire de faire un calcul).

Solution: On détermine un extremum par différentiation

$$\frac{d\mathsf{P}_{\phi}}{d\phi} = \frac{1}{2} \Big(\cos(2\phi) - \sin(2\phi) \Big) = 0$$

ce qui se réalise si $\phi=\phi_0=\frac{\pi}{8}$ donc

$$\mathsf{P}_{max} = \mathsf{P}_{\phi = \frac{\pi}{8}} = \frac{1}{2} \left(1 + \frac{1}{\sqrt{2}} \right) \simeq 0.854$$

3. Maintenant on suppose que Alice utilise une base d'émission qui fait un angle θ avec Ox et Eve utilise à nouveau les bases de réception $\{ \longleftrightarrow, \nwarrow \}$. Montrer que la probabilité pour Eve de se tromper est alors

$$\mathsf{P} = \frac{1}{4}\sin^2(2\theta)$$

Solution : Si Alice emploie une base $\{\theta, \theta_{\perp}\}$ pour l'envoie d'un photon, Eve obtient le résultat correct avec une probabilité de \cos^{θ} pour un photon selon θ et une probabilité de \sin^{θ} pour un photon selon θ_{\perp} . Pour ces deux la probabilité que Bob reçoive la polarisation correcte est donc $\cos^4 \theta$ et $\sin^4 \theta$ respectivement. La probabilité de succès pour Eve est donc

$$\overline{P} = \frac{1}{2} \left(1 + \cos^4 \theta + \sin^4 \theta \right)$$

et donc la probabilité d'erreur est

$$\mathsf{P} = 1 - \overline{\mathsf{P}} = \sin^2\theta \, \cos^2\theta = \frac{1}{4}\sin^2(2\theta)$$