B Exercices

B.1 Indépendance du produit tensoriel par rapport à la base

Supposons que l'on ait construit le produit tensoriel de deux espaces \mathcal{H}_A et \mathcal{H}_B à partir de bases $\{|m_A\rangle\}$ et $\{|n_A\rangle\}$

$$|\varphi_A \otimes \chi_B\rangle = \sum_{m,n} c_m d_n |m_A \otimes n_A\rangle$$

Soit $|i_A\rangle$ et $|j_B\rangle$ deux autres bases orthonormées de \mathcal{H}_A et \mathcal{H}_B déduites des bases $\{|m_A\rangle\}$ et $\{|n_A\rangle\}$ par des transformations unitaires respectives R $(R^{-1}=R^*)$ et S $(R^{-1}=R^*)$

$$|i_A\rangle = \sum_m R_{in} |m_A\rangle$$
 et $|j_B\rangle = \sum_n S_{jm} |n_B\rangle$

Calculer le produit tensoriel $|i_A \otimes j_B\rangle$. Par ailleurs, on peut écrire la décomposition de $|\varphi\rangle$ et $|\chi\rangle$ dans les bases respectives $|i\rangle$ et $|j\rangle$

$$|\varphi\rangle = \sum_{i=1}^{N} \hat{c}_i |i_A\rangle$$
 et $|\chi\rangle = \sum_{j=1}^{N} \hat{d}_j |j_A\rangle$

Montrer que

$$\sum_{i,j} \hat{c}_i \, \hat{d}_j \, |i_A \otimes j_A\rangle = |\varphi \otimes \chi\rangle$$

Solution: Le produit tensoriel $|i \otimes j\rangle$ est donné par

$$|i_A \otimes j_B\rangle = \sum_{m,n} R_{i,m} S_{j,n} |m_A \otimes n_B\rangle$$

Définissons l'état $|\varphi_A \otimes \chi_B\rangle'$ en utilisant la base $\{|i_A\rangle, |j_B\rangle\}$. Cela donne

$$|\varphi_A \otimes \chi_B\rangle' = \sum_{i,j} \hat{c}_i \hat{d}_j |i_A \otimes j_B\rangle = \sum_{i,j,m,n} \hat{c}_i \hat{d}_j R_{i,m} S_{i,n} |m_A \otimes n_B\rangle$$

On peut maintenant effectuer une transformation pour changer de base

$$\hat{c}_i = \sum_k R_{ki}^{-1} c_k$$
 $\hat{d}_i = \sum_l S_{lj}^{-1} d_l$

et montrer que

$$|\varphi_A \otimes \chi_B\rangle' = \sum_{m,n} c_m d_n |m_A \otimes n_B\rangle = |\varphi_A \otimes \varphi_B\rangle$$

Le produit tensoriel est donc indépendant du choix d'une base particulière.

B.2 Propriétés de l'opérateur d'état

1. Montrer à partir de

$$ho = \sum_i \mathsf{p_i} \, |\mathsf{i}
angle \langle \mathsf{i}| \qquad \qquad \sum_i \mathsf{p_i} = 1$$

que l'opérateur d'état ρ le plus général doit avoir les propriétés suivantes :

(a) Il doit être hermitien : $\rho = \rho^*$

(b) Il doit être de trace unité : Tr $\rho=1$

(c) Il doit être positif : $\langle \varphi | \rho | \varphi \geq 0 \quad \forall | \varphi \rangle$

Montrer que la valeur moyenne d'une propriété physique ${\mathcal M}$ est

$$\langle \mathcal{M} \rangle = \text{Tr}(\rho \mathcal{M})$$

Solution : Comme la la probabilité p_i est réelle, ρ est clairement un opérateur hermitien. De plus ${\rm Tr}\rho=\sum_i p_i=1$, et finalement ρ est positif car

$$\langle \varphi | \rho | \varphi \rangle = \sum_{i} \mathsf{p}_{i} |\langle \varphi | i \rangle|^{2} \geq 0$$

Calculons d'abord $\text{Tr}(\mathcal{M}|i\rangle\langle i|)$

$$\operatorname{Tr}(\mathcal{M}|i\rangle\langle i|) = \sum_{j} \langle j|\mathcal{M}|i\rangle\langle i|j\rangle = \langle i|\mathcal{M}|i\rangle$$

d'où

$$\operatorname{Tr}\left(\sum_{i}\mathsf{p}_{i}\mathcal{M}|i
angle\langle i|
ight)=\sum_{i}\mathsf{p}_{i}\langle i|\mathcal{M}|i
angle$$

La valeur moyenne (expectation value) de \mathcal{M} dans l'état $|i\rangle$ apparait comme la somme sur i avec un poids p_i , comme attendu.

2. Montrer de plus que si $\rho^2 = \rho$, alors tous les p_i sont nuls sauf un seul qui égal à un, et en déduire que la condition $\rho^2 = \rho$ est la condition nécessaire et suffisante pour un état pur.

Solution: Dans la base $|i\rangle$, ρ est diagonal avec les éléments de matrice $\rho_{ii}=\mathsf{p}_i$ de tel manière que $\rho^2=\rho$ n'est possible que si l'une des probabilité est 1, car l'équation $\mathsf{p}_i^2=\mathsf{p}_i$ a les solutions $\mathsf{p}_i=1$ et $\mathsf{p}_i=0$. De plus, $\mathrm{Tr}\rho^2=\sum_i\mathsf{p}_i^2\leq\sum_i\mathsf{p}_i$ où l'égalité est réalisée si et seulement si une des probabilités p_i est égale à 1. Assumons, par exemple, que $\mathsf{p}_1=1$ et $\mathsf{p}_i=0$ si $i\neq 1$. Alors $\rho=|1\rangle\langle 1|$, ce qui correspond l'état pur $|1\rangle$. On peut aussi remarquer que $\rho^2=\rho$ implique que ρ est un projecteur \mathcal{P} , and le rang de ce projecteur est 1, car $\mathrm{Tr}\mathcal{P}$ est la dimension du sous-espace sur lequel \mathcal{P} projète.