Analyse Statistique (ASE2) - EPITA ING2

CONVERGENCE ET ESTIMATION

- 1) <u>Introduction</u>: Le problème central de l'estimation en statistique est le suivant : disposant d'observations sur un échantillon de taille n on souhaite en déduire les propriétés de la population dont il est issu.
 - On cherchera à estimer, par exemple, la moyenne d'une population à partir de la moyenne d'un échantillon. Le mode de tirage le plus important est l'échantillonnage aléatoire simple correspondant à des tirages équiprobables et indépendants les uns des autres.

L'une des premières qualités d'un estimateur est d'être convergent en probabilité vers le paramètre à estimer. Un échantillon de X est une suite de variables aléatoires $(X_1, X_2,, X_n)$ indépendantes et de même loi que X. Un estimateur d'un paramètre θ inconnu est une fonction $T = f(X_1, X_2,, X_n)$ qui dépend de l'échantillon et donc T doit converger en probabilité vers le paramètre θ . La précision d'un estimateur sera mesuré par sa variance.

2) Rappels de la loi Gamma et la loi Normale

On dit qu'une variable aléatoire positive X suit une loi gamma de paramètre r, notée γ_r si sa densité est donnée par : $f(x) = \frac{1}{\Gamma(r)} \exp(-x) x^{r-1}$

Avec
$$\Gamma(x) = \int_{0}^{+\infty} \exp(-t)t^{x-1}dt$$
 (fonction Gamma) définie pour $x > 0$

Propriétés de la fonction Gamma

- (1) $\Gamma(x+1) = x\Gamma(x)$ (intégration par partie)
- (2) $\Gamma(1) = 1$
- (3) $\Gamma(n+1) = n!$

(4)
$$\Gamma(k+\frac{1}{2}) = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1)}{2^k} \Gamma(\frac{1}{2})$$

(5)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Espérance de la loi γ_r : Soit X une variable aléatoire suivant la loi gamma de paramètre r

1

On a
$$E(X) = \frac{1}{\Gamma(r)} \int_{0}^{+\infty} t \exp(-t)t^{r-1} dt = \frac{1}{\Gamma(r)} \int_{0}^{+\infty} t^{r} \exp(-t) dt = \frac{\Gamma(r+1)}{\Gamma(r)} = r$$

Variance de la loi $\gamma_r : V(X) = E(X^2) - E^2(X)$

$$E(X^{2}) = \frac{1}{\Gamma(r)} \int_{0}^{+\infty} t^{2} \exp(-t)t^{r-1} dt = \frac{1}{\Gamma(r)} \int_{0}^{+\infty} t^{r+1} \exp(-t) dt = \frac{\Gamma(r+2)}{\Gamma(r)} = r(r+1)$$

Donc
$$V(X) = r(r+1) - r^2 = r$$

Loi Normale de paramètres (m, σ)

On dit qu'une variable aléatoire X suit la loi normale notée $N(m,\sigma)$, si sa densité est $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{x-m}{\sigma})^2)$ où m = E(X) et $\sigma = \sqrt{V(X)}$ (écart type)

Avec le changement de variable $U = \frac{X - m}{\sigma}$ (variable normale centrée réduite), la densité de U est $f(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}u^2)$

Montrons que V(U) = 1

On a
$$V(U) = E(U^2) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} u^2 \exp(-\frac{1}{2}u^2) du = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} u^2 \exp(-\frac{1}{2}u^2) du$$

Posons
$$t = \frac{u^2}{2}$$
, $dt = udu$

$$V(U) = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} 2t \exp(-t) \frac{dt}{\sqrt{2t}} = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} t^{\frac{1}{2}} \exp(-t) dt = \frac{2}{\sqrt{\pi}} \Gamma(\frac{3}{2}) = \frac{2}{\sqrt{\pi}} \frac{1}{2} \Gamma(\frac{1}{2})$$

Donc
$$V(U) = \frac{1}{\sqrt{\pi}} \sqrt{\pi} = 1$$

Moments de la loi normale centrée réduite

Soit U une variable normale centrée réduite, on appelle moment d'ordre k de U : $\mu_k = E(U^k)$

Si k = 2p + 1 alors $\mu_{2p+1} = 0$ (car fonction impaire)

Si
$$k = 2p$$
 alors $\mu_{2p} = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} u^{2p} \exp(-\frac{1}{2}u^2) du = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} u^{2p} \exp(-\frac{1}{2}u^2) du$

Posons
$$t = \frac{u^2}{2}$$
, $dt = udu$

$$\mu_{2p} = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} (2t)^{p} \exp(-t) \frac{dt}{\sqrt{2t}} = \frac{2^{p}}{\sqrt{\pi}} \int_{0}^{+\infty} t^{p-\frac{1}{2}} \exp(-t) dt = \frac{2^{p}}{\sqrt{\pi}} \Gamma(p + \frac{1}{2})$$

Or
$$\Gamma(p+\frac{1}{2}) = \frac{1.3.5....(2p-1)}{2^p} \Gamma(\frac{1}{2})$$
 et $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
Donc $\mu_{2p} = 1.3.5....(2p-1) = \frac{(2p)!}{2^p p!}$

3) Fonctions caractéristiques

<u>Définition</u>: la fonction caractéristique d'une variable aléatoire réelle X est la transformée de Fourier de sa loi de probabilité. elle est notée $\varphi_X(t)$ et On a $\varphi_X(t) = E(\exp(itX))$ (i complexe)

Si X est une variable à densité (X est une v.a continue de densité f) alors :

$$\varphi_X(t) = \int_{R} \exp(itx) f(x) dx$$

Si X est une variable discrète alors sa fonction caractéristique est :

$$\varphi_X(t) = \sum_{k} \exp(itk) P(X = k)$$

Propriétés

- 1) $\varphi_{\lambda X}(t) = \varphi_X(\lambda t) \quad \forall \lambda \text{ un scalaire}$
- 2) $\varphi_{X+a}(t) = \exp(ita)\varphi_X(t) \quad \forall a \text{ un scalaire}$
- 3) Si X est une variable aléatoire d'espérance m et d'écart type σ Et $U = \frac{X - m}{\sigma}$

$$\varphi_{\frac{X-m}{\sigma}}(t) = \varphi_U(t) = \exp(-\frac{itm}{\sigma})\varphi_X(\frac{t}{\sigma})$$

<u>Remarque</u>: la fonction caractéristique se prête bien aux additions de Variables aléatoires indépendantes :

Si X et Y sont deux variables aléatoires indépendantes alors

$$\varphi_{X+Y}(t) = \varphi_X(t).\varphi_Y(t)$$

En effet $\varphi_{X+Y}(t) = E(\exp(it(X+Y))) = E(\exp(itX)\exp(itY))$ Or X et Y sont indépendantes $E(\exp(itX)\exp(itY)) = E(\exp(itX))E(\exp(itY))$ Donc $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$

<u>Proposition</u> : Soit X une variable aléatoire de fonction de répartition $\varphi_X(t)$

On a
$$\varphi_X(0) = 1$$
 et $\frac{d^k \varphi_X}{dt^k}(0) = \varphi_X^{(k)}(0) = t^k E(X^k)$

Démo : supposons que X est une variable continue de densité f

On a
$$\varphi_X(t) = \int_{t_0} \exp(itx) f(x) dx \Rightarrow \varphi_X(0) = \int_{t_0} f(x) dx = 1$$
 (car f est une densité)

En dérivant $\varphi_X(t)$ par rapport à t : $\varphi'_X(t) = i \int_{R} x \exp(itx) f(x) dx$

Si t=0
$$\varphi'_{X}(0) = i \int_{D} x f(x) dx = iE(X)$$

Si on dérive 2 fois,
$$\varphi_X^{(2)}(t) = \int_{IR} (ix)^2 \exp(itx) f(x) dx$$

Pour t=0, on a
$$\varphi_X^{(2)}(0) = (i)^2 \int_{IR} x^2 f(x) dx = -\int_{IR} x^2 f(x) dx = -E(X^2)$$

En dérivant k fois par rapport à t : $\varphi_X^{(k)}(t) = \int_{\mathbb{R}} (ix)^k \exp(itx) f(x) dx$

Donc
$$\varphi_X^{(k)}(0) = (i^k) \int_{IR} x^k f(x) dx = i^k E(X^k) \quad \forall k \in IN$$

Formule de Mac-Laurin

Si $\varphi_X(t)$ est indéfiniment dérivable on a :

$$\varphi_X(t) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} \varphi_X^{(k)}(0) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} i^k E(X^k)$$

Exemple 1 : Soit X une variable aléatoire continue de densité :

$$f(x) = \exp(-x)$$
 si $x > 0$ et $f(x) = 0$ sinon

Déterminer la fonction caractéristique de X

On a
$$\varphi_X(t) = \int_{R} \exp(itx) f(x) dx = \int_{0}^{+\infty} \exp(itx) \exp(-x) dx = \int_{0}^{+\infty} \exp(-(1-it)x) dx$$

$$\varphi_X(t) = \int_0^{+\infty} \exp(-(1-it)x) dx = \left[\frac{-\exp(-(1-it)x)}{(1-it)} \right]_0^{+\infty} = \frac{1}{1-it}$$

Car $\exp(-(1-it)x) = \exp(-x)\exp(itx) \to 0$ lorsque $x \to +\infty$

Puisque $\exp(itx)$ est bornée de module 1 et $\exp(-x) \to 0$ quand $x \to +\infty$

Exemple2 : Déterminer la fonction caractéristique de la loi de Bernoulli de paramètre p

Soit X une variable de Bernoulli :

X = 1 avec la probabilité p et X = 0 avec la probabilité 1-p

X étant discrète, donc sa fonction caractéristique est :

$$\varphi_X(t) = \sum_k \exp(itk)P(X=k) = \sum_{k=0}^1 \exp(itk)P(X=k) = P(X=0) + \exp(it)P(X=1)$$

$$\varphi_X(t) = 1 - p + p \exp(it) = q + p \exp(it)$$
 avec $q = 1 - p$

4) Convergences des suites de variables aléatoires

Une suite (X_n) de variables aléatoires étant une suite de fonctions il existe diverses façons de définir la convergence de (X_n) dont certaines jouent un grand rôle en statistiques.

a) Convergence en probabilité

Définition

La suite (X_n) converge en probabilité vers une variable aléatoire X Si $\forall \varepsilon > 0, \eta > 0$ (arbitrairement petits) il existe un entier n_0 tel que

$$\forall n > n_0 \Rightarrow P(|X_n - X| > \varepsilon) < \eta$$

C'est-à-dire
$$P(|X_n - X| > \varepsilon) \xrightarrow[n \to +\infty]{} 0$$

On notera $(X_n) \xrightarrow{P} X$

Inégalité de Bienaymé-Tchebychev

$$P(|X - E(X)| > \varepsilon) < \frac{V(X)}{\varepsilon^2} \quad \forall \varepsilon > 0$$

Remarque : Lorsque $E(X_n) \xrightarrow[n \to +\infty]{} a$, il suffit de montrer que $V(X_n) \xrightarrow[n \to +\infty]{} 0$ pour établir la convergence en probabilité de La suite (X_n) vers a.

En effet d'après Tchebychev :
$$P(|X_n - E(X_n)| > \varepsilon) < \frac{V(X_n)}{\varepsilon^2} \to 0$$

Donc en passant à la limite :
$$\lim_{n\to+\infty} P(|X_n - a| > \varepsilon) = 0 \ \forall \varepsilon > 0$$

b) Convergence en moyenne quadratique

On suppose que $E(|X_n - X|^2)$ existe

Définition

On dit qu'une suite de variables aléatoires (X_n) converge en moyenne quadratique vers une variable X si $E(|X_n - X|^2) \xrightarrow[n \to +\infty]{} 0$ on notera $(X_n) \xrightarrow{m.q} X$

c) Convergence en loi

Définition

La suite (X_n) converge en loi vers la variable X de fonction de répartition F si en tout point de continuité de F la suite (F_n) des fonctions de répartition des (X_n) converge vers F

C'est-à-dire $\lim_{n\to+\infty} F_n(x) = F(x)$ pour tout x point de continuité de F On notera $(X_n) \xrightarrow{L} X$

<u>Remarque</u>: Pour les variables discrètes, la convergence en loi est équivalente à $\lim_{n\to +\infty} P(X_n = k) = P(X = k)$

<u>Théorème</u>: Si la suite des fonctions caractéristiques $\varphi_{X_n}(t)$ converge vers $\varphi_X(t)$ alors $(X_n) \xrightarrow{L} X$

5) Applications

Convergence en loi de la binomiale vers la loi Normale

<u>Théorème (Moivre-laplace)</u>

Soit (X_n) une suite de variables binomiales B(n, p)

Alors
$$\frac{X_n - np}{\sqrt{npq}} \xrightarrow{L} N(0,1)$$
 lorsque $n \to +\infty$

Démonstration : la fonction caractéristique de la loi B(n, p) est :

$$\varphi_{X_n}(t) = (p \exp(it) + 1 - p)^n$$
 donc celle de $Y_n = \frac{X_n - np}{\sqrt{npq}}$ est:

$$\varphi_{Y_n}(t) = (p \exp(\frac{it}{\sqrt{npq}}) + 1 - p)^n \exp(\frac{-itnp}{\sqrt{npq}})$$

$$Ln(\varphi_{Y_n}(t)) = nLn(p(\exp(\frac{it}{\sqrt{npq}}) - 1) + 1) - \frac{itnp}{\sqrt{npq}}$$

On rappelle le développement limité de l'exponentielle à l'ordre 2

$$\exp(x) \approx 1 + x + \frac{x^2}{2}$$
 (au voisinage de 0)

$$Ln(\varphi_{Y_n}(t)) \approx nLn(p(\frac{it}{\sqrt{npq}} - \frac{t^2}{2npq}) + 1) - \frac{itnp}{\sqrt{npq}}$$

On rappelle $Ln(1+x) \approx x - \frac{x^2}{2}$ (au voisinage de 0)

Donc
$$Ln(\varphi_{Y_n}(t)) \approx n\left[\frac{pit}{\sqrt{npq}} - \frac{pt^2}{2npq} + \frac{p^2t^2}{2npq}\right] - \frac{itnp}{\sqrt{npq}}$$

$$Ln(\varphi_{Y_n}(t)) \approx -\frac{t^2}{2q} + \frac{pt^2}{2q} = \frac{t^2}{2q}(p-1) = -\frac{t^2}{2}$$

En composant par l'exponentielle :

$$\varphi_{Y_n}(t) \approx \exp(-\frac{t^2}{2})$$
 fonction caractéristique de la loi normale N(0,1)

Conclusion:
$$\frac{X_n - np}{\sqrt{npq}} \xrightarrow{L} N(0,1)$$

Remarque :lorsque n est assez grand on peut donc approximer la loi Binomiale par la loi normale. On donne généralement comme Condition np et nq > 5

Il convient cependant d'effectuer la correction de continuité : On obtient donc une valeur approchée de P(X=x) par la surface sous La courbe de densité de la loi normale $N(np, \sqrt{npq})$ comprise entre

Les droites d'abscisse
$$x - \frac{1}{2}$$
 et $x + \frac{1}{2}$

$$P(X = x) \approx P(x - \frac{1}{2} < X < x + \frac{1}{2}) = P(\frac{x - \frac{1}{2} - np}{\sqrt{npq}} < \frac{X - np}{\sqrt{npq}} < \frac{x + \frac{1}{2} - np}{\sqrt{npq}})$$

Et
$$P(X \le x) \approx P(\frac{X - np}{\sqrt{npq}} < \frac{x + \frac{1}{2} - np}{\sqrt{npq}})$$

Exemple: Soit X une variable binomiale B(n=40;p=0,3)

La valeur exacte pour P(X = 11) est 0,1319

La formule d'approximation :

$$P(X = 11) \approx P(\frac{11 - \frac{1}{2} - 12}{\sqrt{8,4}} < \frac{X - 12}{\sqrt{8,4}} < \frac{11 + \frac{1}{2} - 12}{\sqrt{8,4}}) = P(-0.52 < U < -0.17) = 0.131$$

Avec np = 12 et npq = 8,4

Donc l'erreur est de moins de 1%

Convergence en loi de la loi de Poisson vers la loi normale

<u>Théorème</u>: Soit (X_{λ}) une suite de variables de Poisson de paramètre λ

Alors si
$$\lambda \to +\infty$$
, $\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}} \xrightarrow{L} N(0,1)$

Démo : on rappelle la fonction caractéristique de la loi de Poisson :

$$\varphi_{X_{\lambda}}(t) = \exp(\lambda \exp(it) - \lambda)$$

On rappelle aussi la formule $\varphi_{\frac{X-m}{\sigma}}(t) = \exp(-\frac{itm}{\sigma})\varphi_X(\frac{t}{\sigma})$

Donc la fonction caractéristique de la variable $\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}}$ est :

$$\varphi_{\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}}}(t) = \exp(-\frac{it\lambda}{\sqrt{\lambda}})\varphi_X(\frac{t}{\sqrt{\lambda}}) = \exp(-\frac{it\lambda}{\sqrt{\lambda}})\exp(\lambda\exp(i\frac{t}{\sqrt{\lambda}}) - \lambda)$$

En utilisant le développement limité à l'ordre 2 de la fonction expo

$$\exp(\frac{it}{\sqrt{\lambda}}) \approx 1 + \frac{it}{\sqrt{\lambda}} - \frac{t^2}{2\lambda}$$

Donc
$$\varphi_{\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}}}(t) = \exp(-\frac{it\lambda}{\sqrt{\lambda}} + \lambda + \frac{\lambda it}{\sqrt{\lambda}} - \frac{t^2}{2} - \lambda) = \exp(-\frac{t^2}{2})$$

On retrouve la fonction caractéristique de la loi normale centrée et réduite.

Conclusion:
$$\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}} \xrightarrow{L} N(0,1)$$
.

Théorème (Central-limite)

Soit (X_n) une suite de variables aléatoires, indépendantes et de même Loi d'espérance m et d'écart-type σ alors :

$$\frac{X_1 + X_2 + \dots + X_n - nm}{\sigma \sqrt{n}} \xrightarrow{L} N(0,1)$$

Démonstration :
$$\frac{X_1 + X_2 + \dots + X_n - nm}{\sigma \sqrt{n}} = \sum_{i=1}^n \frac{X_i - m}{\sigma \sqrt{n}}$$

Posons
$$Y_n = \sum_{i=1}^n \frac{X_i - m}{\sigma \sqrt{n}}$$

$$E(\frac{X_i - m}{\sigma \sqrt{n}}) = \frac{E(X_i) - m}{\sigma \sqrt{n}} = 0 \quad \text{et} \quad V(\frac{X_i - m}{\sigma \sqrt{n}}) = \frac{1}{\sigma^2 n} V(X_i) = \frac{\sigma^2}{n\sigma^2} = \frac{1}{n}$$

La fonction caractéristique de $Y_n = \sum_{i=1}^n \frac{X_i - m}{\sigma \sqrt{n}}$ est :

$$\varphi_{Y_n}(t) = \prod_{i=1}^n \varphi_{\frac{X_i - m}{\sigma \sqrt{n}}}(t) = (\varphi_{\frac{X_i - m}{\sigma \sqrt{n}}}(t))^n = (1 - \frac{t^2}{2n} + o(\frac{1}{n^2}))^n$$

On rappelle que $(1+\frac{x}{n})^n \to \exp(x)$ lorsque $n \to +\infty$

Car
$$(1+\frac{x}{n})^n = e^{n\ln(1+\frac{x}{n})} \approx e^{n\frac{x}{n}} = e^x$$

Donc
$$\varphi_{Y_n}(t) = (1 - \frac{t^2}{2n} + o(\frac{1}{n^2}))^n \to e^{-\frac{t^2}{2}} \text{ lorsque } n \to +\infty$$

Ce qui montre la convergence en loi vers la loi normale

6) Estimateurs

<u>Définition</u>: Soit $(X_1, X_2,, X_n)$ un échantillon de X c'est-à-dire une suite de variables aléatoires indépendantes et de même loi que X

<u>La statistique \overline{X} ou moyenne empirique de l'échantillon est $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ </u>

$$E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{nm}{n} = m \quad \text{où } m = E(X)$$

$$V(\overline{X}) = \frac{1}{n^2} \sum_{i=1}^{n} V(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n} \to 0$$
 lorsque $n \to +\infty$

Donc d'après Tchebychev $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} m = E(X)$ quand $n \to +\infty$

C'est la loi des grands nombres.

 \overline{X} est un exemple d'estimateur de la moyenne m = E(X)

<u>Définition</u> On appelle variance empirique, la statistique :

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Proposition:
$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - (\overline{X})^{2}$$

Démo :
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + \overline{X}^2)$$

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i} \overline{X} + \overline{X}^{2}) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \frac{1}{n} \sum_{i=1}^{n} X_{i} + \frac{n}{n} \overline{X}^{2}$$

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X}^{2} + \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - (\overline{X})^{2}$$

Montrons que $S^2 \xrightarrow{P} \sigma^2$ lorsque $n \to +\infty$

D'après la loi des grands nombres, on a :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} m = E(X) \text{ quand } n \to +\infty$$

Et
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} E(X^2)$$
 quand $n \to +\infty$

Donc
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\overline{X})^2 \xrightarrow{P} E(X^2) - E^2(X) = \sigma^2 = V(X)$$

 S^2 est un estimateur de la variance.

<u>Définition</u>: On considère une population X, distribuée suivant une Loi de probabilité qui dépend d'un paramètre θ inconnu.

On prélève un échantillon $(X_1, X_2,, X_n)$ de X, on appelle estimateur de θ , toute variable aléatoire T_n fonction de l'échantillon :

$$T_n = f(X_1, X_2,, X_n)$$

On appelle biais de l'estimateur la quantité $b(T_n) = E(T_n) - \theta$

On dit que l'estimateur est sans biais si $b(T_n) = 0 \Leftrightarrow E(T_n) = \theta$ Comme exemple \overline{X} est un estimateur sans biais de m = E(X)Puisque $E(\overline{X}) = m$

<u>Définition</u>: On dit qu'une suite (T_n) d'estimateurs de θ est asymptotiquement sans biais si $\lim_{n \to \infty} E(T_n) = \theta$

On appelle risque quadratique de T_n ou erreur quadratique :

$$R(T_n) = E((T_n - \theta)^2)$$

<u>Proposition</u>: le risque quadratique est $R(T_n) = V(T_n) + (E(T_n) - \theta)^2$ Démonstration:

$$(T_n - \theta)^2 = (T_n - E(T_n) + E(T_n) - \theta)^2$$

$$E((T_n - \theta)^2) = E((T_n - E(T_n))^2) + 2E((T_n - E(T_n))(E(T_n) - \theta)) + E((E(T_n) - \theta)^2)$$

$$E((T_n - \theta)^2) = V(T_n) + 2(E(T_n) - \theta)(E(T_n) - E(T_n)) + (E(T_n) - \theta)^2$$
Donc $R(T_n) = V(T_n) + (E(T_n) - \theta)^2$

Remarque : Si l'estimateur est sans biais $b(T_n) = E(T_n) - \theta = 0$ Alors $R(T_n) = V(T_n)$

Donc si on a deux estimateurs sans biais du paramètre θ Le plus précis est celui de variance minimale.

<u>Définition</u>: On dit que l'estimateur T_n est convergent si cet Estimateur converge en probabilité vers le paramètre θ . on écrira $T_n \xrightarrow{P} \theta$ lorsque $n \to +\infty$

<u>Définition</u>: On appelle vraisemblance de θ , la densité de L'échantillon $(X_1, X_2,, X_n)$:

$$L(x_1, x_2, \dots, x_n, \theta) = \prod_{i=1}^n P(X_i = x_i)$$
 (dans le cas discret)

$$L(x_1, x_2, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i)$$
 (dans le cas continu)

Exemple : On considère un échantillon $(X_1, X_2,, X_n)$ d'une variable de Poisson de paramètre θ (inconnu)

la vraisemblance de cet échantillon est : $L(x_1, x_2,, x_n, \theta) = \prod_{i=1}^{n} P(X_i = x_i)$

$$L(x_1, x_2,, x_n, \theta) = \prod_{i=1}^{n} \exp(-\theta) \frac{\theta^{x_i}}{x_i!} = \frac{\exp(-n\theta) \theta^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$

<u>Définition</u>: On appelle quantité d'information de Fisher $I_n(\theta)$ apportée par Un échantillon sur le paramètre θ la quantité positive : $I_n(\theta) = E((\frac{\partial \ln L}{\partial \theta})^2)$

Proposition:

$$I_n(\theta) = -E(\frac{\partial^2 \ln L}{\partial \theta^2})$$

Démo : L étant une densité : $\int_{\mathbb{R}^n} L(x,\theta) dx = 1$

En dérivant par rapport à θ : $\int_{\mathbb{R}^n} \frac{\partial L(x,\theta)}{\partial \theta} dx = 0 \quad (1)$

en remarquant que $\frac{\partial \ln L(x,\theta)}{\partial \theta} = \frac{\frac{\partial L}{\partial \theta}(x,\theta)}{L(x,\theta)}$

(1) donne
$$\int_{B^n} \frac{\partial \ln L(x,\theta)}{\partial \theta} L(x,\theta) dx = 0$$

ce qui prouve que la variable aléatoire $\frac{\partial \ln L(x,\theta)}{\partial \theta}$ est centrée et que $I_n(\theta) = V(\frac{\partial \ln L}{\partial \theta})$

Dérivons une deuxième fois par rapport à θ :

$$\int_{\mathbb{R}^n} \frac{\partial^2 \ln L(x,\theta)}{\partial \theta^2} L(x,\theta) dx + \int_{\mathbb{R}^n} \frac{\partial \ln L(x,\theta)}{\partial \theta} \frac{\partial L(x,\theta)}{\partial \theta} dx = 0$$

$$\int_{\mathbb{R}^n} \frac{\partial^2 \ln L(x,\theta)}{\partial \theta^2} L(x,\theta) dx + \int_{\mathbb{R}^n} \left(\frac{\partial \ln L(x,\theta)}{\partial \theta}\right)^2 L(x,\theta) dx = 0$$

Dono

$$I_n(\theta) = E((\frac{\partial \ln L}{\partial \theta})^2) = \int_{\mathbb{R}^n} (\frac{\partial \ln L(x,\theta)}{\partial \theta})^2 L(x,\theta) dx = -\int_{\mathbb{R}^n} \frac{\partial^2 \ln L(x,\theta)}{\partial \theta^2} L(x,\theta) dx = -E(\frac{\partial^2 \ln L(x,\theta)}{\partial \theta^2})$$

Inégalité de FRECHET-DARMOIS-CRAMER-RAO(FDCR)

On a pour tout estimateur T sans biais de θ : $V(T) \ge \frac{1}{I_n(\theta)}$

L'estimateur T sera qualifié d'efficace si la borne inférieure est atteinte

C'est-à-dire
$$V(T) = \frac{1}{I_n(\theta)}$$

Méthode du maximum de vraisemblance

Cette méthode consiste, étant donnée un échantillon de valeurs $x_1, x_2,, x_n$ à prendre comme estimation de θ la valeur de θ qui rend maximale la vraisemblance $L(x_1, x_2,, x_n, \theta)$.

En fait, on prend comme estimation de θ la solution de l'équation de

la vraisemblance :
$$\frac{\partial \ln L}{\partial \theta} = 0$$