ASE3 Cheat sheet - Analyse en composantes principales

Rappels utiles:

- 1. Multiplication de matrice
 - \circ La matrice résultante doit être : $A_{n*m}*B_{m*p} => C_{n*p}$
 - o Trois propriétés importantes :
 - AB ≠ BA
 - $I_nA = AI_n = A$
 - ullet Si A et B sont carrées de taille n, alors $AB=I_n=>BA=I_n$ et $B=A^{-1}$ (inverse de A)
- 2. Calcul de la trace
 - Somme des termes de la diagonale d'une matrice carrée
 - \circ Notée sous la forme Tr(A) ou Trace(A)
- 3. Représentation par transposition
 - Échange des lignes et des colonnes d'une matrice
 - $\circ \;\;$ Notée sous la forme A' ou A^T

Matrice des poids p_i

Nous associons à chaque individu un poids $p_i \geq 0$ qui correspond à la probabilité de choisir un individu. La somme des poids de la matrice est égale à 1.

Formule:

$$\sum_{i=1}^n p_i = p_1 + p_2 + p_3 + \ldots = 1$$

$$D=egin{pmatrix} p_1&0&\dots&0\ 0&p_2&\dots&0\ dots&dots&\ddots&dots\ 0&0&\dots&p_n \end{pmatrix}$$

Cas uniforme : Si tous les individus ont le même poids, alors $p_i=rac{1}{n}\Rightarrow D=rac{1}{n}I_n$, où I_n est la matrice identité.

Moyenne des variables $ar{X}^{(j)}$ et centre de gravité g

Définition : La moyenne d'une colonne $\bar{X}^{(j)}$ (avec j le numéro de colonne et $j\in [1,p]$) s'obtient en additionant chaque valeur de colonne et en multipliant l'ensemble par son poids p_i :

$$ar{X}^{(j)} = \sum_{i=j}^n P_i X_i^{(j)}$$

Définition : Le centre de gravité, représenté par le vecteur g des moyennes arithmétiques de chaque variable $X^{(j)}$, est définit par $g=(\bar{X}^{(1)},\bar{X}^{(2)},\ldots,\bar{X}^{(j)})$.

Matrice des données centrées Y

Définition : La matrice Y s'obtient en soustrayant chaque moyenne $\bar{X}^{(j)}$ de la matrice initiale X, c'est-à-dire :

$$Y_i^{(j)} = X_i^{(j)} - ar{X}^{(j)} \quad , orall j \in [1,p], orall i \in [1,n]$$

Matrice de variance-covariance V

Définition : La matrice de variance-covariance V (ou $\mathit{var-covariance}$) est une matrice carrée de dimension p représentée sous la forme suivante :

$$V = egin{pmatrix} \sigma_1^2 & \sigma_{1,2} & \dots & \sigma_{1,p} \ \sigma_{2,1} & \sigma_{2,2} & \dots & \sigma_{2,p} \ dots & dots & \ddots & dots \ \sigma_{p,1} & \sigma_{p,2} & \dots & \sigma_p^2 \end{pmatrix}$$

Formule: Cette matrice s'obtient avec la formule

$$V = Y^T * D * Y$$

Symétrie : La matrice V est symétrique, donc $V^T=V$.

Diagonalisation d'une matrice

Rappel: Soit une matrice A, diagonaliser cette matrice revient à chercher une matrice diagonale D ainsi qu'une matrice inversible P telle que :

$$A = P * D * P^{-1}$$

Dans le cours d'ASE3, diagonaliser revient à calculer les valeurs propres de la matrice afin d'en déterminer par la suite ses composantes et facteurs principaux.

Valeurs propres

Définition (rappel) : Soit une matrice A, on appelle polynôme caractéristique de A, noté en général P_A , le polynôme défini par

$$P_A(\lambda) = det(A - \lambda I_n)$$

En calculant ce polynôme, nous pouvons trouver les **valeurs propres** de la matrice A.

Pourcentage d'inertie

Définition : L'inertie totale mesure l'étalement du nuage de points d'une matrice. L'inertie de l'axe α est calculée divisant sa valeur propre λ_{α} par la somme des valeurs propres des différents axes.

Formule:

$$\text{Inertie de l'axe } \alpha = \frac{\lambda_{\alpha}}{\sum_{1}^{n} \lambda_{n}}$$

La résultat doit être présenté sous forme de pourcentage.

Facteurs principaux

Définition: Les facteurs principaux sont les vecteurs propres associés aux plus grandes valeurs propres.

Formule:

Pour trouver les vecteurs propres de V, nous posons $E(\lambda_lpha)=Ker(V-\lambda_lpha I_n)$

Méthode:

$$orall u = egin{pmatrix} x \ y \ z \end{pmatrix} \in E(\lambda_lpha) <=> (V-\lambda_lpha I_n) egin{pmatrix} x \ y \ z \end{pmatrix} = \stackrel{
ightarrow}{0}$$

Après calcul par intégration linéaire, on trouve :

$$E(\lambda_lpha) = Vect(egin{pmatrix} lpha \ eta \ \gamma \end{pmatrix})$$

(où α , β et γ sont les solutions de l'équation linéaire trouvée pour i).

Pour calculer u, on pose :

$$u^{(i)} = rac{1}{\sqrt{lpha^2 + eta^2 + \gamma^2}} egin{pmatrix} lpha \ eta \ \gamma \end{pmatrix}$$

Remarque : $E(\lambda_{\alpha})$ est une droite vectorielle et u est normé.

Composantes principales

La composante principale ${\cal C}$ est définie par :

$$C^{(i)} = Y * u^{(i)}$$

Remarque: Les composantes principales contiennent les projections d'individus sur les axes factoriels.

Coefficients de corrélation linéaire

Définition : La méthode la plus naturelle pour donner une signification à une composante principale $C^{(i)}$ est de la relier aux variables $X^{(j)}$ (variables intiales) en calculant les coefficients de corrélation linéaire :

$$p(X^{(j)},C^{(i)})$$

Formule:

$$p(X^{(j)},C^{(i)}) = rac{Cov(X^{(j)},C^{(i)})}{\sigma_{X^{(j)}}\sigma_{C^{(i)}}}$$

Remarque:

$$Cov(X^{(j)},C^{(i)})=< y^{(j)},C^{(i)}>$$

où $y^{(j)}$ est une variable centrée.