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Lecture Outline: Quantum mechanics is different from most other branches of science in that
it uses complex numbers in a fundamental way. Complex numbers are therefore absolutely
essential to a basic understanding of quantum computation. Indeed quantum theory is cast in

the language of complex vector spaces, we shall also introduce basic concepts of linear algebra
in C" during this lecture.
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1 Complex Numbers

The original motivation for the introduction of complex numbers was the theory of algebraic
equations, the part of algebra that seeks solutions of polynomial equations. It became apparent
that there are plenty of cases in which no solution among familiar numbers set can be found.

Here is the simplest example:
?+1=0 (1)

Indeed, any 22 € R would be positive or zero. Hence no solution exists.

1.1 Basic definitions

Before building any new number system, it would be useful to remind ourselves of the other
sets of numbers we usually work with:

Positive numbers, P = {1,2,3, ...}

Natural numbers, N ={0,1,2,3,...}

Integers, Z = {...,—3,—2,-1,0,1,2,3, ...}

Rational numbers, Q = {£|m € Z,n € P}

Real numbers, R = RUJ{..., V2, ....e, ..., T, ..., =N

With P C N C Z C Q C R. In none of those familiar number systems can a valid solution to
equation be found. To be able to find a solution we need a number i such that i> = —1 or
1 =+—1.

Of course no such number exists in R. Thus we will simply allow ¢ to exists as an imagi-
nary number, aside from its weird behavior when squared, ¢ will behave just like an ordinary
number.

We can add a real number to an imaginary number, for instance, 3 + 5 x i, and you get a
hybrid entity which is not real nor imaginary and is called a complex number.

Definition 1.1. A complex number is an expression such as:
c=a+b (2)

where a,b € R; a is called the real part of c, whereas b is its tmaginary part. The set of all
complex numbers will be denoted as C with R C C (since real numbers are just complex number
with an imaginary part equal to zero).

1.2 Algebra of complex numbers

Since a complex number can be defined by two real numbers, let us define ¢ € C as an ordered
pair of real:

c— (a,b) (3)

Ordinary real numbers can then be identified with pairs (a,0) and imaginary numbers with
pairs 0, b, in particular i — (0, 1).
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Complex number addition performs componentwise:

(ala by) + (ag, b2) = (Ch + ag, by + b2) (4)
Whereas multiplication is a little trickier:
(a1,b1) X (ag,b2) = (a1ag — byba, a1by + ashy) (5)

Using addition and multiplication we thus can write any complex number number in the usual
form such as:

c¢=(a,b) = (a,0) + (0,b) = (a,0) + (b,0) x (0,1) = a + bi (6)

Exercise 1.1. Let ¢; = (3, —2) and ¢ = (1,2). Calculate their product.

We have currently a set of numbers and two operations: addition and multiplication. Both
operations are commutative, meaning that Vc;, co € C we have:

Cc1+cy=c+ 1 (7)
and
Cl1 X Cp=0C X (8)
Both operation are also associative:
(Cl -+ Cz) —+ C3 = (1 + (CQ + 03) (9)
and
(Cl X CQ) X g =<C X (CQ X Cg) (10)

We can then show that multiplication distributes over addition, indeed Ve, ¢o, c3 € C we then
have:

c1 X (02 + 63) = (Cl X 62) + (Cl X 03) (11)
Complex subtraction is straightforward:
cice = (a1,b1) — (ag,b2) = (a1 — az, by — by) (12)

And finally we can express the division such as:

¢ a1 +bit ajas +biby  ashy —aby
— = o 5 5 + 3 ) X1 (13)
co  as+ byt as + b; as + b;

Exercise 1.2. Let ¢y = =2 + 7 and ¢y = 1 + 4. Calculate z—;

Real numbers have a unary operator (operator that need only one operand), the absolute value,
given by:

la| = +Va? (14)

We can define a generalization of this operation to the complex domain by letting:
le| = +Va? + b? (15)

This quantity is known as the modulus of a complex number. We can then rewrite the

division(|13]) such as:

ﬂ . ay + bll . a1ao + blbg CLle — CL1b2

co  ap+boi ‘02’2 ‘02’2

X i (16)
Note that |c; + 2| < |eq| 4 |ea] and |eq| |ea] = |e1c2| which make sense geometrically.
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There is a unary operation that plays a crucial role in the complex domain, we are already
familiar with “changing signs” of real numbers, however there are two real numbers attached
to a complex number. Therefore there are three ways of changing signs:

e Changing signs of the real and imaginary parts is done by multiplying by the
number —1 = (—1,0).

e Changing the sign of the imaginary part only is known as conjugation. If ¢ = a+bi
then the conjugate of ¢ is ¢ = a — bi. Two numbers related by conjugation are said to
be complex conjugates of each others.

e Changing the sign of real part only is defined by the operation ¢ — —¢ (with
—C = —a + bi) has no particular name in the algebraic context but will be shown to be
an imaginary-axis reflection in the Section 1.3.

Note that ¢; +¢; = ¢1 + ¢ and ¢ X ¢3 = ¢ X ¢ and most importantly that for ¢ = a + bi we
have ¢ x ¢ = |¢|* = a2 + b2

1.3 Geometry of complex numbers

It turns out that the significance of complex numbers extends far beyond the algebraic domain
and make them equally useful in geometry and hence in physics. At the beginning of Section
1.2, we learned that a complex number is a pair of real numbers. This suggests a natural means
of representation: real numbers are placed on the axis of a 2-dimensional plane, so pairs of real
numbers correspond to points on the plane, or, equivalently, corresponds to vectors starting
from the origin and pointing to that point.

c=a+b

le]=p

Figure 1: Complex plane

Thus the number ¢ = a + bi can be represented as a vector of coordinates (a,b) with the x
axis being the real axis whereas the y-axis correspond to the imaginary axis. The vector
length corresponds to the modulus |c¢| which we will refer from now on as the magnitude p
(to adjust to physics vocabulary) and the angle 6 corresponds to the phase of c.

We can then express ¢ in polar coordinates with its magnitude p and its phase 6 such as:

(a,b) — (p,0) (17)

With p = va? + % and 6 = tan~' () which can be found via simple trigonometry. Note that we
can go back to cartesian coordinates with a = pcosf and b = psiné. From a polar coordinates
point of view, we consider that ¢; and ¢y have the same phases 6, and 6, if with k € Z we have:

01:02@02:01+27Tk’:01[2ﬂ'] (18)
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Example 1.1. Are the numbers (3, —7) and (3, 7) the same ? Indeed they are: their magnitude
is the same and their phases differ by (—7) — 7 = —27 = (—1)2x, thus the phase 0y = 7 is
equal to the the phase 6; modulo 27 such as 0y = 01 + 27k with k = —1 € Z.

The multiplication in polar coordinates of two complex numbers can be obtained simply by
multiplying their magnitudes and adding their phases such as:

(p1,01) X (p2,02) — (p1p2, 01 + 02) (19)

In particular the multiplication of a complex number ¢ by 7 has interesting properties since the
magnitude of 7 is 1 and its phase is equal to §[27] radians or 90°. It will indeed result in a
counterclockwise rotation of 90°.

cxi

Figure 2: Multiplying by 4 results in a 90° rotation without change of magnitude.

We do not need any more fundamental knowledge about complex numbers to continue, just note
that any complex number ¢ can also be expressed in polar coordinates with its exponential
expression c = pe’.

2 Complex Vector Spaces

2.1 Definitions and properties

Notion goal 2.1. Quantum systems are described by using complex vector spaces and their
evolution is represented by complex vector space’s operations. Understanding definitions and
properties is important to be able to grasp the nature of quantum states and operations in
quantum computing.

Definition 2.1. A complex vector space is a nonempty set of V, whose elements we shall
call vectors, with three operations:

o Addition: +:V xV — 'V
e Negation: —:V —V
e Scalar multiplication: - : CxV — V

and a distinguished element called the zero vector 0 € V in the set. These operations and
zero must satisfy the following properties: YV, W, X € V and Vcy, co, co € C,

1. Commutativity of addition: V+W =W +V
2. Associativity of addition: (V +W)+X =V + (W + X)
3. Zero is an additive identity: V +0=V =04V
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4. Every vector has an inverse: V + (=V)=0= (=V)+V

b. Scalar multiplication has a unit: 1-V =V

6. Scalar multiplication respects complex multiplication: ¢y - (co- V) = (¢ X ¢9) -V

7. Scalar multiplication distributes over addition: ¢- (V+W)=c¢-V +c-W

8. Scalar multiplication distributes over complex addition: (¢y +¢3) -V =¢1 -V + ey V

Any set that has an addition operation, an inverse operation and a zero element that satisfies
properties 1, 2, 3 and 4 is called an Abelian group. If there is a scalar multiplication that
satisfies all the properties, then the set with the operations is called a complex vector space.
Even if our main concern is complex vector spaces, we can gain much intuition from real vector
spaces.

Figure 3: We can show using R? as example that vector addition follows the parallelogram rule (left);
the geometric interpretation of inverse vector (middle); and a real multiple of a vector (right).

Example 2.1. C"™*" the set of all m-by-n matrices with complex entries, is a complex vector
space.

For a given A € C™", we denote the complex entry in the j** row and the k'* column as
Alj, klor ¢;,. We shall denote the j* row as A[j, —] and the k' column as A[—, k].

We will define three operations on C™*":

e The transpose of A, denoted AT, is defined as AT[j, k] = Alk, j]

e The conjugate of A, denoted A, is defined as A[j, k] = A[j, k]

o The adjoint of A, denoted A, is defined as AT = (4") = (AT) or Al[j, k] = A[k, j.
These operations satisfy the following properties Vc € C and VA, B € C"™*™:

1. Transpose is idempotent: (AT)T = A

2. Transpose respects addition: (A + B)T = AT + BT

3. Transpose respects scalar multiplication: (c- A)T = c¢- AT

4. Conjugate is idempotent: A=A

5. Conjugate respects addition: A+ B = A+ B
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6. Conjugate respects scalar multiplication: ¢- A=7¢- A
7. Adjoint is idempotent: (AT = A

8. Adjoint respects addition: (A + B)! = At + BT

9. Adjoint respects scalar multiplication (c- A)f =¢- AT

The matrix multiplication is the binary operation * : C"*" x C"*P — C™*P defined such

as:
n—1

(Ax B)[j.k] = Y (Alj, h] x Blh. k]) (20)

h=0
As we will mainly work with square matrices, we will shows that matrix multiplication
satisfies the following properties: V A, B, C € C**",

1. Matrix multiplication is associative: (A% B) * C' = A x (B % ()
2. Matrix multiplication has I, as a unit: I, x A= A= Ax1,

3. Matrix multiplication distributes over addition: A * (B + C) = (A x B) + (A x C) and
(B+C)x*A=(BxA)+ (Cx* A)

Matrix multiplication respects scalar multiplication: ¢- (A% B) = (¢- A)* B = A% (¢- B)

Matrix multiplication relates to the transpose: (A * B)T = BT x AT

SIS A

Matrix multiplication respects the conjugate: A« B = A B
7. Matrix multiplication relates to the adjoint: (A% B)" = BT x Al

Note that commutativity is not a property of matrix multiplication. This fact will be very
important in quantum mechanics.

Let Ac C™*" and B C", AxB e C",
A represents the function A : C* — C™.

As the elements of C" will be our way to describe the states of a quantum system, some
suitable elements of C™*" will correspond to the changes that occur to the states of a quantum
system. Given a state X € C" and a matrix A € C™*", we shall form another state of the
system A x X € C". We say that the algebra of matrices "acts” on the vectors to yield new
vectors.

Definition 2.2. Given two complex vector spaces V and V', we say that V is a complex
subspace of V' if V is a subset of V' and:

1. 'V is closed under addition: ¥ V1,V €V, V1 + V5, €V
2. 'V is closed under scalar multiplications: ¥V ¢ € C andVV €V, ¢c-V €V

Definition 2.3. Let V and V' be two complex vector spaces. A linear map from'V to V' is a
function f:V — V' such that YV, V;, Vo € V and Ve € C,

1. f respects the addition: f(Vi +Va) = f(V1) + f(V2)
2. f respects the scalar multiplication: f(c-V) =c- f(V)

A linear map F': C" — C" such that for A€ C"™*" and V € V, F(V) = A%V will be called
an operator and be represented by matrix A. Note that several matrices might represent the
same operator.
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Definition 2.4. V and V' are isomorphic if there is a one-to-one linear map F : V — V',
Such a map is called an tsomorphism.

It means that the name of the elements of the vector spaces are renamed but the structure of
the vector spaces are the same, these are said ”essentially the same” or "the same up to
isomorphism”.

Example 2.2. Poly,, the set of complex polynomials of degree n, then n+1 coefficient and C**!
are isomorphic since representing a polynomial is done through storing its complex coefficients
in an+ 1 array.

What we have learned 2.1. Through this part, we described the basic operations in C™ and
their properties as well as some basic definition about complex vector space, in particular:

e A function f: C" — C" applied to a vector V' € C™ can be represented as a matrix A
which we will call operator such as f(V) = A* V. In the next lectures, we will represents
quantum systems as vectors of complex numbers and we will describe the operations on
them by those operator matrices.

e We have learned that we can compare the vector spaces and we defined that vector spaces
are isomorphic when they share the same structure. We also discovered vector sub-
spaces which are subsets of vector spaces, adding or applying scalar multiplication on
vectors in this subspace must yield vectors that are also part of the same subspace.

2.2 Basis and dimension

A basis of a vector space is a set of vectors of that vector space that is special in the sense that
all other vectors can be uniquely written in terms of these basis vectors.

Notion goal 2.2. As we saw before, quantum systems are represented by complex vectors, the
notion of basis will offer a very convenient way to represent quantum systems in superposition
as a linear combination of possible outcome states defined by elements of the basis of a complex
vector space.

Definition 2.5. Let V be a complex vector space, V € V is a linear combination of the
vectors Vo, V(1),..., Vo1 € Vif V' can be written as:

V=co-Vo+tec - Vi+..+cn1-Vu (21)
for some ¢y, cq,...,cn_1 € C.
A set {Vo, Vi,...,V,_1} € V is called linearly independent if:
O=cy-Vot+car-Vi+...+cng Vor=>co=c1=..=¢p1 =0 (22)

That means that the only way that linear combination can be equal to the 0 vector is that all
the ¢; are zero. This also means that the vectors in {Vp, Vi,...,V,_1} cannot be written as a
combination of the others in the set.

Example 2.3.
1 0 0
1 1 0 (23)
1 1 1
is linearly independent because the only way that
0 1 0 0
0=10|=a(1]+y[1l]+2]0 (24)
0 1 1 1

isthat t =y=2=0
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Example 2.4.
1 0 2
1 1 -1 (25)
1 1 -1
is linearly dependent because
0 1 0 2
O=0)| =21 +y|[l]+2]|-1 (26)
0 1 1 —1
=3
can be solved with ¢ y = —3
z=—1

Definition 2.6. A set B = {V,, V1, ..., V1) €V is called a basis of the (complex) vector
space V if both:

1. every V €V can be written as a linear combination of vectors from B
2. B 1s linearly independent

Even if many sets can form a basis, it is easier to work with canonical basis (also called
standard basis).

Example 2.5. The canonical basis of C" is:

1 0 0
B=|"l m=|' . EB..=|" (27)
0 0 1

Every vector V' € C" can be written as V = 2?:_01 ¢;E; for c € C™.
Proposition 2.1. For every vector space, every basis has the same number of vectors.

Definition 2.7. The dimenstion of a vector space is the number of elements in a basis of the
vector Space.

Example 2.6. Let us cite some dimension examples:
e dim(R?) = 3 as a real vector space.

e dim(C") = n as a complex vector space, it is however of dimension 2n as a real vector
space since every complex is described by two real numbers.

e dim(C™ ™) = m x n as a complex vector space.
o dim(V x V') =dim(V) + dim(V").

Proposition 2.2. Any two vector spaces that have the same dimensions are isomorphic.
In particular for each n, there is essentially only one complex vector space that is of dimension

n: C".

Sometime we shall use more than one basis for a single vector space, consider the basis

{1 (@)
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The vector V' = (_717> can be written as V =3 (_13) -2 (_42) thus we say Vp = (_32)

If C' is the canonical basis of R? then

7 1 0 7
- (_17) :7(0) 17 (1) V-V = (_17> (29)
Let us consider another basis of R*: D = 9 7 .

A transition matrix from basis B to basis D is noted Mp. g such as:

w902 w

There are standard algorithms to find transition matrices, however we do not need to know
how to do use them for this lecture.

» . . : 1
In R?, the transition matrix from the canonic basis { (0) (

1 1
{ (‘{5) ( ‘/51 ) } is the Hadamard matrix H:

7z 7
1 /1 1 A
P2 A Tw

The Hadamard matrix plays a major role in quantum computing. Note that H «x H = [,
meaning that the transition is reversible.

L <= Hadamard =

Figure 4: The Hadamard matrix as a transition between two bases.

0

1) } to the other basis

What we have learned 2.2. In this section we have introduced the notion of basis, which
are key to understand the notion of dimension of vector spaces in particular:

e Every vector of a vector space can be expressed as a linear combination of elements
belonging to the basis of this vector space. Canonical basis are much easier to work with
in most cases.

e Sometimes it is more convenient to switch to another base to simplify calculations during
a specific operation, to perform this change of basis, we use transition matrices.
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2.3 Inner products and Hilbert spaces

Notion goal 2.3. The notion of inner product is extremely useful to manipulate elements
of vector spaces, hence it is also useful to perform operations on quantum systems. It intro-
duces the notion of Hilbert space, which is frequently used in most of the quantum computing
literature, from now on, we will only work on Hilbert spaces.

Definition 2.8. An inner product (or dot product) on a complex vector space V is a function
(—, =) : VXV — C which satisfies the following conditions ¥ V, V1, V5, V3, V4 € V and Ve € C:

1. Non degenerate: (V,V)>0if V #0
2. Respects addition: (Vi + Va, V3) = (V1, Va) +(Va, V3) and (V1, Vo + V3) = (V1, Vo) +(V1, V3)
3. Respects scalar multiplication: {c- Vi, Vo) =¢ x (V1,Va) and (V1,c- V) = ¢ x (V1, V)

4. Skew symmetric: (V1,Va) = (Vo, Vi)

Note that with property 4 we can show that the inner product of a complex vector with itself
is a real number: (V,V) = (V,V)and 2 =7 < x € R.

Definition 2.9. A inner product space is a vector space along with an inner product.
Example 2.7. Let us list some example of inner product spaces:

e R™: the inner product is defined as (V;,Va) = VT x V4

e C": the inner product is defined as (Vi, V5) = V' V3 with Vi = (V)T

e R™ " the inner product is defined as (A, B) = Trace(A” x B)

e C™": the inner product is defined as (A, B) = Trace(A' x B)

Definition 2.10. For every complex inner product space V,{(—, =), we can define a norm (or
length) which is a function | | : V — R defined as:

V=V, V) (32)
and satisfies the following propertiesV V,W €V and c € C:
1. Non degenerate: |V| >0 if V#0
2. Triangle inequality: |V + W| < |V|+ |[W]
3. Respects scalar multiplication: |c- V| = |c| x |V|

Definition 2.11. For every complex inner product space V, (—, —), we can define the distance
function d( , ): VxV — R defined as:

d(Vi,Va) = [Vi = Vol = V/(Vi = Vo, V1, V) (33)
and satisfies the following properties VU, V,W €V and ¢ € C:
1. Non degenerate: d(V,W) >0 if V#W
2. Triangle inequality: d(U, V) < d(U, W)+ d(W,V)
3. Symmetric: d(V,W) = d(W,V)
Definition 2.12. Two vectors Vi and Vs in an inner product space V,{(—, —) are orthogonal

if (V1,V2) = 0.
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Definition 2.13. A basis B = {Vy, V1, ..., Vu_1} for an inner product space V, (—, —) is called an
orthogonal basis if the vector are pairwise orthogonal to each other, i.e, j # k < (j, k) = 0.
An orthogonal basis is called an orthonormal basis if every vector in the basis is of norm 1,

lifj=k
(Vi Vi) = 03 = {o if j# k (34)
0,k 15 called the Kronecker delta function.

In R?, (V, V") = |V]|V'| cos @ and when |V’| = 1 we have (V,V’) = V| cos § which corresponds
to the length of the projection of V onto V.

Figure 5: The projection of V onto V.

Hence, (V, V') - V" is the vector V' extended (or reduced) to meet the projecton of V' onto V.
What does it means in terms of R3? Let V = (rq,71,72)" € R® and {Ejy, Ey, E»} € R3. Then:

To 1 0 0
V=|r|=E,V)[0]+(ELV)[1] +(E, V)0 (35)
9 0 0 1

In general, for any V € R" V = Z?;g (E;,V) E;. We shall use the intuition given by R3 and
R" to understand this type of decomposition of vectors in sums of canonical vectors
for other vector spaces.

Proposition 2.3. In C”, any V can be written as:
V =(Ey,V)Ey+ (E\,V)E1+ ... + (En-1, V) By (36)
Note that this is true for any orthonormal basis, not just the canonical one.

Definition 2.14. Within an inner product space V,{ , ) (with the derived norm and a distance
function), a sequence of vectors Vo, Vi, Va, ... is called a Cauchy sequence if Ve > 0,4Ny; € N
such that:

Vm,n > No, d(Vin, Vi) <€ (37)

Definition 2.15. A complex inner product space V, ( , ) is called complete if for any Cauchy
sequence of vectors Vo, Vi, ... there exists a vector V €V such that:

lim |V, — V| =0 (38)

n—oo

The intuition behind this is that a vector space with an inner product is complete if any sequence
accumulating somewhere converges to a specific point.
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Definition 2.16. A Hilbert space is a complex inner product space that is complete.

If completeness seems like an overly complicated notion, given the scope of our lecture, we do
not need it thanks to the following proposition.

Proposition 2.4. Every inner product on a finite-dimensional complex vector space is auto-
matically complete, hence every finite-dimensional complex vector space with an inner product
is automatically a Hilbert space.

Quantum computing in this lecture will only deal with finite-dimensional vector spaces and we
do not have to concern ourselves with the notion of completeness.

What we have learned 2.3. Through this part we understood the notion of norm, distance
and projections using the inner product of a (complex) vector space, along with the notion of
completeness, those allowed us to precisely define Hilbert spaces. We will see again the inner
product for the notion of transition amplitude, which represents the collapse of a quantum
system to a possible outcome state as a inner product.

2.4 Eigenvalues and eigenvectors

Notion goal 2.4. The notion of eigenvalues and eigenvectors will be useful to us in association
of hermitian matrices (next section), in particular every physical observable of a quantum
system have a corresponding hermitian matrix and measurement of that observable leads to a
state that is represented by one eigenvector associated to this matrix.

Example 2.8. Consider the R?*? matrix
4 -1
(2 ; ) (39)
4 -1\ /(1 3 1
G 0)-()-0) o

Multiplying our matrix by this vector is nothing more then multiplying the vector by a scalar.
In other words, when this matrix acts on this vector, it does not change the direction of the
vector but only its length.

Notice that:

Of course this is not always true for every vector, nor is it true for every matrix. However when
it is true, we assign special names to such scalars and vectors.

Definition 2.17. For a matriz A € C"*", if there is a number ¢ € C and a vector V # 0 in
C™ such that:
AV =c¢-V (41)

this ¢ is called an eigenvalue of A and V is called an eigenvector of A associated with c.
("eigen-"is a German prefix that indicates possession.)

If a matrix A has eigenvalue ¢y with eigenvector Vj, then V ¢ € C we have
A(cVy) = cAVy = ceo = ¢o(cVp) (42)

which shows that cVj is also an eigenvector of A with eigenvalue c¢y. If ¢V and 'V are two
such eigenvectors, then because

AV + V) = AcVy + AdVy = cAVy + AV = c(eoVo) +  (coVo) = (e + ) (coVo)  (43)

we see that athe addition of two such eigenvectors is also an eigenvector. We can conclude the
following proposition:

Proposition 2.5. Every eigenvector determines a complex subvector of the vector space. This
space is known as the eigenspace associated to the given eigenvector.

Some matrices have many eigenvalues and eigenvector while other have none.
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What we have learned 2.4. We saw the definition of eigenvalues and eigenvectors, and that
since the sum and scalar multiplication of eigenvectors still yields other eigenvectors, they form
by definition a vector subspace called eigenspace.

2.5 Hermitian and unitary matrices

Notion goal 2.5. As we saw previously, all operations on quantum systems will be represented
by matrices, for example observables (that we will cover in next lectures) of quantum systems
are represented by hermitian matrices, whereas any operation performed by quantum gates
have to be represented by unitary matrices.

A matrix A € R" is called symmetric if AT = A. In other words, A[j, k] = A[k,j]. And we
can generalize this notion complex numbers such as:

Definition 2.18. A matriz A € C™*" is called hermitian if AT = A. In other words, A[j, k] =
Alk, j] with At = (A)T.

Notice from this definition that the elements along the (main) diagonal of an hermitian
matrix must be real.

Definition 2.19. If A is a hermitian matriz then the operator it represents is called self-
adjoint.

Proposition 2.6. If a is a hermitian n-by-n matrix, then YV, V' € C" we have:
(AV, V') = (V, AV") (44)
Which can be proved easily: (AV, V') = (AV)1 x V' = VIATV' = VT x AV = (V, AV')

Proposition 2.7. If A is hermitian, then all its eigenvalues are real. Indeed it can be easily
shown that with an eigenvalue ¢ € C and V' € C" an eigenvector we have

AV.V) = (VLAV) = (AV,V) = (eV,V) = (V. V) (45)
And because V' is nonzero, c =¢ = ¢ € R.

Proposition 2.8. For a given hermitian matrix, distinct eigenvectors that have distinct eigen-
values are orthogonal.

Definition 2.20. A diagonal matriz is a square matriz whose only nonzero entries are on
the (main) diagonal. All entries of the diagonal are zero.

Proposition 2.9. (The Spectral Theorem for Finite-Dimensional Self-Adjoint Op-
erators) Every self-adjoint operator A on a finite-dimensional complex vector space V can
be represented by a diagonal matrix whose diagonal entries are the eigenvalues of A and
whose eigenvectors form an orthonormal basis for V which is called an eigenbasis.

Definition 2.21. A matriz A is invertible if there exists a matriz A~ such that:
Ax A=A A=1, (46)

Unitary matrices are a type of invertible matrix. They are invertible and their inverse is
their adjoint. This fact ensure that unitary matrices ”preserve the geometry” of the space on
which it is acting.

Definition 2.22. A matriz U € C"*" is unitary if:

UxUl=U'sU=1" (47)

Lecturer: Jean-Adrien Ducastaing QCOMP 14



EPITA 2020 QCOMP GITM Specialization

Show that the matrix P is unitary for any 6.

cos —sin6 0
P=|siné cos 0 0
0 0 1

Proposition 2.10. Unitary matrices preserves inner product, i.e, if U is unitary then
VvV V, V' e C" we have (UV,UV") = (V,V').

Because unitary matrices preserves inner product, they also preserves norms.

UV|=(UV.UV) =(V.V) = V| (48)

In particular, if |V| = 1, then |[UV| = 1. Consider the set of all vectors that have a norm of
1, they form a ball around the origin (the zero of the vector space), we call this ball the unit
sphere.

Figure 6: The unit sphere and the action of U on V.

If V is a vector on the unit sphere, UV is also on the unit sphere. A unitary matrix is a
way of rotating the unit sphere.

If U is unitary and UV = V', then we can easily multiply both sides of the equation by
Ut to get UTUV = UV’ =V, then UT can "undo” the action of the operator U on V, we say
that this action is "reversible”.

What we have learned 2.5. Through this section we defined hermitian matrices, which,
when representing an operator, are called self-adjoint operators as well as unitary matrices
that can be used to rotate the unit sphere. In particular:

e A quantum bit, that for now we will define simply as the smallest possible quantity
of information supported by a quantum system, can be implemented with a polarized
photon which can be represented by a unit sphere and a polarization vector, applying a
quantum gate on this quantum bit will be done by applying a rotation on this photon,
this operation will be represented using a unitary matrix.

e The reversible property of actions performed by unitary matrices on vectors will be a
very useful notion when we will introduce quantum gates.

e The variant of spectral theorem we introduced will be useful when we will define observ-
ables of quantum systems.
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2.6 Tensor product of vector spaces

Notion goal 2.6. The notion of tensor product is critical to represent the concept of quantum
entanglement which is a very important effect in quantum physics and computing.

In this section we study the tensor product which is an important method of combining vector
spaces. If V describes a quantum system and V' describes another, then their tensor product
describes both quantum systems as one. The tensor product is therefore the most fundamental
building operation of quantum systems.

Given two vector spaces V and V', we shall form the tensor product of two vector spaces,
and denote it V ® V’. The tensor product is generated by the set of tensors:

(VeV' |VeVand V' eV} (49)

where ® is just a symbol. A typical element of V ® V' looks like this:

1

c(VioVl)=cWVeoVy)+aVioV)+..+ca(Vai®V, ) (50)

n

Il
o

7

The operations on this vector space are straightforward. For a given Zf;ol ¢;(V; @ V) and
970 ci(Vi ® V), the addition is defined as:

p—1 q—1
Y aVioV)+) aViel) (51)
i=0 1=0

And the scalar multiplication for a given ¢ € C is

—_
[y

e S aViav) = Y ex )i V) (52

%

I
o
I
o

i
We impose the following rewriting rules for this vector space:

1. The tensor must respect addition in both V and V’:

Vi+ V)@V, =V, eV +V; V) (53)

Vie(VieV)=VieV/+VieVy (54)
2. The tensor must respect the scalar multiplication in both V and V’:
c-(V;oV)=(c-V)eV,=V,®(c-V]) (55)
By following these rewriting rules and setting elements equal to each other, we form V@ V'.

Let B = {By, B, ..., Bjn—1} the basis of V and B’ = {Bj|, B, B,—1} the basis of V', then
the basis of V ® V' is the set of vectors {B; ® B;, | j =0,1,...m —1and £k =0,1,...,n — 1}.
Thus dim(V®@ V') = dim(V) x dim(V') = m x n, it is isomorphic to C"™*™ and every vector
SP o a(Vio V) € VeV ocan be written as:

0070 —I— (B() ® B(/)) + 0170(B1 ® B(l)) —I— —|— Cm—l,n—l(Bm—ly B':z—l) (56)

V ® V' is to be thought of as the vector space whose basic states are pairs of states, one from
system V and one from system V’.
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Given a vector ¢oBy+c1B1+..+¢p—1Bm—1 € V and a vector ¢, B+ ¢, Bi+...+¢,-1B,,_, € V',
we can associate the following element to V@ V’:

(co X ¢p)(Bo @ By) + (c1 x ¢})(Bo @ By) + ... + (¢m—1 X ¢}, _1)(Bp—1 ® B_1) (57)

The tensor product of two vectors is defined as follow:

bO &Qbo

ap - | b aogby

b2 (l(]bg

bo a1b0

Qo aiy - b1 a1b1
“le 20 = Dl | = | @il (58)

(05} b; N bo o Clgbo

as as - b1 CLle

b2 a2b2

bo asby

as - | b1 azby

b azby

8
12
6 2 4
Example 2.9. Consider V = | € CP = C? ® C?, V can be expressed as (3> ® 16
3
18
9
8 zTa
0 xb
0 T ¢ xc
Example 2.10. In contrast, 0| € C% = C?®C? cannot be written as (y) @(b] = ya
0 ¢ yb
18 yc

since yc # 0 and za # 0 but ya = 0 which is impossible. But it can be written as a sum of

tensor products such as:
8 0
1 0
(o (1) (9) -
0 3

We shall call a vector that can be written as the tensor of two vectors separable. And a vector
that cannot be written as the tensor of two vector but can be written as the nontrivial sum of
such tensors shall be called entangled.

We also need to know the tensor product of two matrices which is defined as:

b0,0 bO,l b0,2

A® B = (ZO’O Zo’l) ® | bio by 1 b2

b b b2,0 b2, b2.2
bo,o bo,1 bo,2 boo bo,1 bo,2

ap - | bio b1 b1 aop,1 - | bio b1 b1 (60)

. b2.0 ba1 ba2 b2,0 b2 b2,2
boo bo,1 bo,2 boo bo,1 bo,2
Q10 - 51,0 51,1 51,2 i - bl,o 51,1 51,2
b2,0 ba.1 ba,2 b2,0 ba,1 b2
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The resulting 6-by-6 matrix is left as a (boring) exercise to the reader.

If A acts on V and B acts on V', then we define the action on their tensor product as:
(A@B)*(VV)=AxVBxV' (61)

What we have learned 2.6. In this section we have introduced the tensor product and how
it can be used to represent a quantum system engulfing two quantum subsystems. In
particular:

e We saw that for an entangled vector, since we cannot represent it by a single tensor
of two vector but rather as a non trivial sum of tensors, if we know the value of one of
those vectors, we can infer the value of the other. When those two vectors are a couple
of entangled particles, we can then instantly infer the quantum state of one particle from
only observing the other particle, even if the two particles are light-years apart.

e Not all systems are entangled, in the case when we cannot infer the state of the second
subsystem by measuring the first subsystem, meaning the global system can be expressed
as a single tensor, the system is then called separable.

3 Exercise Corrections

3.1 Complex Numbers

3.1.1 Exercise 1.1
c1 X e =(3,-2) x(1,2)
=Bx1—-(-2)x2,-2x14+2x3)
= (344, -2+46)=(7,4)=7+4

3.1.2 Exercise 1.2
In this case a; = =2, by = 1, as = 1, and by = 2. Therefore,

—2 41 —2><1+1><2+1><1—(—2)><2X,
— 1
1+2¢ 12 4 22 12 4 22

0 5 05
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3.2 Complex Vector Spaces

3.2.1 Exercise 2.1
We need to show that P * PT = I5.

cos —sinf 0 cos 0 —sin 6 0
P+xPl = PxPT = [|sinf cos 0] x| —sind cos 0
0 0 1 0 0 1

Since cos #? + sin #? = 1 we obtain

cosfcosf —sinf(—sinf)  cosfsinf —sinfcosf 0
= | sinfcosf + cosf(—sinf)  sinfsinf + cosfcosd 0

0 0 1
cos 02 + sin 62 0 0 1 0 0
= 0 cosf? +sinf? 0|l =10 1 0| =1
0 0 1 0 0 1
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