
EPITA 2020 QCOMP ICE Specialization

QCOMPPW Intro: Programming Warm-up
Paul-Emile Morgades

Based on:
Qiskit textbook & numpy documentation

Practical Outline: During this practical we will quickly get familiar with Python and Qiskit

Contents

1 Introduction . 2
1.1 IDE . 2

1.1.1 Installation . 2
1.2 Submission . 2
1.3 Given files . 2
1.4 Download Python’s packages . 3
1.5 Imports . 3
1.6 Documentation . 3

2 Numpy . 4
2.1 Exercise 1: Kronecker Product . 4

2.1.1 Without loops (using numpy) . 4
2.2 Exercise 2: Iterative kronecker product . 4

3 Qiskit . 6
3.1 Introduction to Qiskit . 6
3.2 Exercice 3: XOR . 7

Lecturer: Paul-Emile Morgades QCOMP 1

EPITA 2020 QCOMP ICE Specialization

1 Introduction

To properly simulate quantum behaviours using a classical computer and Python 3, we are
going to need two libraries. The first one is Numpy, providing numerical computing tools
like linear algebra. The second one, Qiskit [kiss-kit], is an open source SDK for working with
quantum computers at the level of pulses, circuits and algorithms.
Do not worry, this practical aims to be short and efficient. The main goal is to code simple
functions, which are a pretext to packages installation. Please be thorough, and do not hesitate
to ask for help.
Each practical is graded, and this one is a good opportunity to start properly while quantum
computing might seem very straightforward. Of course, cheating and code sharing are not
permitted. This rule applies to the upcoming sessions as well.

1.1 IDE

We recommend using Pycharm, it allows to easily download the package needed.

1.1.1 Installation

You can download Pycharm here. Both the professional and the community edition are good.

1.2 Submission

Your code will need to be submitted using github, on a repository from this assignment.
The only files that matter to us are the given Python files named exercise *.py, and these are
the only files that you should ‘git ad
Every practical has a deadline. Today’s one is on Sunday the 21st of november at 23:59.
Only the very last commit is taken into account.
The grade is determined by the script run test suite.py. To run it through Pycharm, you
have to open it and click on the green arrow:

It will output something like this:

Your mark is: 0

Your proof of work is: 0,9967204840567662

You will have to put the proof of work in this Excel file. Your proof of work represent your
mark, so update it every time you have a better mark. You also have to push your corresponding
work on GitHub.

1.3 Given files

You can download the given files to complete all along the next exercises and the test suite:
here. You have to download all the file.

Lecturer: Paul-Emile Morgades QCOMP 2

https://www.jetbrains.com/pycharm/download/?source=google&medium=cpc&campaign=14127625826&gclid=CjwKCAjw64eJBhAGEiwABr9o2F045imySGVbqgwwMg8jAkuRnSTLbe7INIdmYUONOQgfrZU-J9xcFhoCCEkQAvD_BwE#section=windows
https://classroom.github.com/a/-_67hR13
https://epitafr-my.sharepoint.com/:x:/g/personal/paul-emile_morgades_epita_fr/ERxsQNtVLIlOrbuUYJI3uo0BIKQREBzvRsNhsY2CTXYKYg?e=a8oBEw
https://epitafr-my.sharepoint.com/:f:/g/personal/paul-emile_morgades_epita_fr/EsHWzQcX_DhPuOYJ1yk_Gl0BI4RkB_LHlJuTkR3gPOztKw?e=uE4blZ

EPITA 2020 QCOMP ICE Specialization

1.4 Download Python’s packages

Open your GitHub repository with Pycharm.

Then download the given file and put them in your repository.

Wait a little bit and click on ”install requirement”:

1.5 Imports

Through these exercises, you will be asked to use numpy and, at the end, qiskit. They are
the only allowed imports.

import numpy as np

from qiskit import *

1.6 Documentation

numpy: https://numpy.org/doc/1.19/
qiskit: https://qiskit.org/documentation/

Lecturer: Paul-Emile Morgades QCOMP 3

https://numpy.org/doc/1.19/
https://qiskit.org/documentation/

EPITA 2020 QCOMP ICE Specialization

2 Numpy

Please mind 2.1. Numpy is one of the top-used Python library, especially among data scien-
tists and computer engineers. These following exercise aim to show you the power of this tool.
Even if some useful tips are given to you each time, do not hesitate to take a glimpse at the
documentation.

All along these exercise, tricky cases (empty list, None, equal number of values...) won’t be
tested.

2.1 Exercise 1: Kronecker Product

2.1.1 Without loops (using numpy)

This function should return the Kronecker product between two matrices. Using loops is...
forbidden. As always, think about numpy functions, that is what this practical is about. If
you don’t remember what the Kronecker product is, below is a quick recap. Further details are
given is the textbook.
Given A a matrix m ∗ n and B a matrix p ∗ q. The Kronecker product symbolized A ⊗ B, of
size mp ∗ nq, is defined as such:

m1 = [5]

m2 = [7]

result = kroneckerProduct(m1, m2)

reference = [35]

assert np.array_equal(result , reference)

m1 = [[2]]

m2 = [[4, 5],

[6, 7]]

result = kroneckerProduct(m1, m2)

reference = [[8, 10],

[12, 14]]

assert np.array_equal(result , reference)

m1 = [[1, 2]]

m2 = [[4, 5],

[6, 7]]

result = kroneckerProduct(m1, m2)

reference = [[4, 5, 8, 10],

[6, 7, 12, 14]]

assert np.array_equal(result , reference)

2.2 Exercise 2: Iterative kronecker product

To do so, you will have to program the function computeMatrix. This function takes into
input a matrix :2x2 baseMatrix, an integers : nbQbit, and an integer fQbit. This function
output:

I
⊗(nbQbit−fQbit−1)
2 ⊗matrix⊗ I⊗fQbit

2

. Let’s consider
I⊗3 = I ⊗ I ⊗ I

Lecturer: Paul-Emile Morgades QCOMP 4

EPITA 2020 QCOMP ICE Specialization

and
I⊗0 =

[
1
]

The function must pass this test:

m = [[5]]

arr = [[5]]

assert (np.array_equal(computeMatrix(m, 1, 0), arr))

m = [[5]]

arr = [[5.0, 0],

[0, 5.0]]

assert (np.array_equal(computeMatrix(m, 2, 0), arr))

m = [[0,1],

[1,0]]

arr = [[0., 1., 0., 0.],

[1., 0., 0., 0.],

[0., 0., 0., 1.],

[0., 0., 1., 0.]]

assert(np.array_equal(computeMatrix(m,2,0), arr))

m = [[1 ,2] ,[3 ,4]]

arr = [[1., 0., 2., 0.],

[0., 1., 0., 2.],

[3., 0., 4., 0.],

[0., 3., 0., 4.]]

assert(np.array_equal(computeMatrix(m,2,1), arr))

m = [[1 ,2] ,[3 ,4]]

arr = np.kron(np.kron(np.identity (2),m), np.identity (2))

assert(np.array_equal(computeMatrix(m,3,1), arr))

One way to implement it is to:

• create an array of nbQbit I2 matrixes ([I2,I2,...,I2])

• replace the fQbitth matrix by baseMatrix

• make a Kronecker product out of the values of the array. In the reverse orders !!!!!

Think to check the function numpy.identity.
Try to debug by looking at your algorithm’s execution rather than looking at the output matrix.

Lecturer: Paul-Emile Morgades QCOMP 5

https://numpy.org/doc/stable/reference/generated/numpy.identity.html

EPITA 2020 QCOMP ICE Specialization

3 Qiskit

Please mind 3.1. Qiskit accelerates the development of quantum applications by providing
the complete set of tools needed for interacting with quantum systems and simulators. It is
one of the preferred choices for quantum computing in Python.

3.1 Introduction to Qiskit

This exercice will be pretty straightforward. We do not want you to get scared by quantum
computing, and we will pretty much give you a hint for every single line of your code. So do
not worry, and let’s dive into it.

Please mind 3.2. Here are shortcuts link for this exercise:

1. Single qubits gates

2. And if you get the curiosity: here is how to create more complex circuits

To get more familiar about the Python library, here is a code sample for the NOT function.
Try to understand it and, why not, run it.

from qiskit import *

def NOT(input):

q = QuantumRegister (1) # a qubit in which to encode and manipulate the input

c = ClassicalRegister (1) # a bit to store the output

qc = QuantumCircuit(q, c) # this is where the quantum program goes

We encode '0' as the qubit state |0>, and '1' as |1>

Since the qubit is initially |0>, we don't need to do anything for an input of

'0'
For an input of '1', we do an x to rotate the |0> to >|1>

if input ==1:

qc.x(q[0])

Now we've encoded the input , we can do a NOT on it using x

qc.x(q[0])

We extract the |0>/|1> output of the qubit and encode it in the bit c[0]

qc.measure(q[0], c[0])

We'll run the program on a simulator

backend = Aer.get_backend('qasm_simulator ')
Since the output will be deterministic , we can use just a single shot to get it

job = execute(qc ,backend ,shots =1)

output = next(iter(job.result ().get_counts ()))

return output

Lecturer: Paul-Emile Morgades QCOMP 6

https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-algorithms/defining-quantum-circuits.html

EPITA 2020 QCOMP ICE Specialization

3.2 Exercice 3: XOR

Your goal is to fill out the XOR function code sample.
Remember that, if {|0〉, |1〉} are the only allowed input values for both qubits, then the TAR-
GET output of the CNOT gate corresponds to the result of a classical XOR gate.
Here Qiskit’s CNOT gate’s documentation.

Figure 1: CNOT truth table

Lecturer: Paul-Emile Morgades QCOMP 7

https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.cx.html

	Introduction
	IDE
	Installation

	Submission
	Given files
	Download Python's packages
	Imports
	Documentation

	Numpy
	Exercise 1: Kronecker Product
	Without loops (using numpy)

	Exercise 2: Iterative kronecker product

	Qiskit
	Introduction to Qiskit
	Exercice 3: XOR

