
EPITA 2022 QCOMP ICE Specialization

QCOMPPW101: Simulating a quantum computer
Jean-Adrien Ducastaing, Paul-Emile Morgades

Based on:
MITx: 8.370.1x Quantum Information Science I, Part I

Practical work Outline: During this practical work we will simulate a quantum computer.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Given file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Submission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Python requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Generate state vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Handle one gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1 Iterative kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Handle one NOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Handle one Hadamard gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Handle many gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Bonus: Handle CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1 Compute CNOT matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Back to our quantum computer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Compute Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Lecturer: Paul-Emile Morgades QCOMP 1



EPITA 2022 QCOMP ICE Specialization

1 Introduction

The goal of this practical work is to make you program a simulation of a quantum computer.
You will have to program it in Python3. The only package you have the right to use is
NumPy, math and Enum. You will have to program the function:

1 quantumComputer (nbQbits: int , quantumGates: list)

The input nbQbits is the number of qubits in the circuit.
The input quantumGates is the list of quantum gates of the circuit.

1.1 Given file

You can download the given file here.
The content of the only given file you have to fill quantumComputer.py:

import numpy as np

from enum import Enum

#Enumeration for each type of gate our quantum computer handle

class TypeOfQuantumGate(Enum):

NOT = 1

HADAMARD = 2

CNOT = 3

#The class quantum gate

#TypeOfGate is the type of the gate (a value of TypeOfQuantumGate)

#fQbit is the position in the circuit of the first input Qbit of the gate

#sQbit is the position in the circuit of the second input Qbit of the gate ( if the

gate has two input)

class QuantumGate:

def __init__(self , typeOfGate: TypeOfQuantumGate , fQbit: int , sQbit: int =0 ):

self.typeOfGate = typeOfGate

self.fQbit = fQbit

self.sQbit = sQbit

#The main function , you need to program it without using qiskit

#nbQbits is the number of Qbits of the circuit

#QuantumGates is the list of quantum gates of the circuits

#This function output the state vector of the circuit after executing all the gate

def quantumComputer(nbQbits: int , quantumGates: list):

pass

[number=none] You will have to program in this file.
TypeOfQuantumGate is an enumeration for each type of gate our quantum computer
handle.
QuantumGate is the class of the quantum gate.
TypeOfGate is the type of the gate (a value of TypeOfQuantumGate).
fQbit is the position in the circuit of the first input qubit of the gate.
sQbit is the position in the circuit of the second input qubit of the gate (if the gate has two
input). You can add functions to QuantumGate.

1.2 Submission

Your code will need to be submitted using github, on this assignment. The only file that
matter to us are the given Python file named quantumComputer.py, and these are the only
files that you should ‘git add‘.
Every practical has a deadline. Today’s one is on Sunday the 5th of december at 23:59.
Only the very last commit is taken into account.

Lecturer: Paul-Emile Morgades QCOMP 2

https://epitafr-my.sharepoint.com/:f:/g/personal/paul-emile_morgades_epita_fr/EhJbHJbu9SdEsdW5DpgQ8DMBXpDQ7xpk8KY-TeJvpKkjAw?e=tHoQyg
https://classroom.github.com/a/BKKSVnUe


EPITA 2022 QCOMP ICE Specialization

The grade is determined by the script run test suite.py. To run it through Pycharm, you
have to open it and click on the green arrow:

It will output something like this:

Your mark is: 0

Your proof of work is: 0,9967204840567662

You will have to put the proof of work in this Excel file. Your proof of work represent your
mark, so update it every time you have a better mark. You also have to push your corresponding
work on GitHub.

1.3 Python requirements

The Python requirements are the same of the previous workshop and you can install them with
the given requirements.txt

1.4 Reference

You can find an implementation of this practical work at https://drive.google.com/file/

d/1iaBw1yT4I48oAII77b8p4_YhF4pGI7Kx/view?usp=sharing.
This implementation uses Qiskit but you does not have the right to do so. Nevertheless this
can be useful to test your code and disambiguate what you are ask to do. Your practical work
has to behave the same way1.
The reference raise exception for some type of input. Your quantum computer will never be
tested for those kinds of inputs.
You do not have to understand how it is coded, only how it works.

1.5 Test

You can find a lot of test in this file : gigaTest.py.

1.6 Documentation

The only Numpy functions you will need are:

• zeros: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html

• matmul: https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

• transpose: https://numpy.org/doc/stable/reference/generated/numpy.transpose.
html

• kron: https://numpy.org/doc/stable/reference/generated/numpy.kron.html
1The values will be compared using the NumPy function isclose

Lecturer: Paul-Emile Morgades QCOMP 3

https://epitafr-my.sharepoint.com/:x:/g/personal/paul-emile_morgades_epita_fr/EW81JNf-1QhDkfL8Fit1LSQBXCFAzpPyfremdn5wDFgtjA?e=EtdPYI
https://drive.google.com/file/d/1iaBw1yT4I48oAII77b8p4_YhF4pGI7Kx/view?usp=sharing
https://drive.google.com/file/d/1iaBw1yT4I48oAII77b8p4_YhF4pGI7Kx/view?usp=sharing
https://epitafr-my.sharepoint.com/:u:/r/personal/paul-emile_morgades_epita_fr/Documents/QCCOMPPW%202022%20Given%20file/QCCOMPPW%202022%201/gigaTest.py?csf=1&web=1&e=rBgJOb
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
https://numpy.org/doc/stable/reference/generated/numpy.kron.html


EPITA 2022 QCOMP ICE Specialization

2 Generate state vector

For validating this section, your quantum computer will have to handle an empty list of
quantum gate as input. On an empty list your quantum computer should output a vector of
2nbQbits values, with the first value being equal to one and the other values must be equal to
zeroes. Your quantum computer must pass this test (no assert must be thrown):

arr = np.array ([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j])

comparison = np.array_equal(arr , quantumComputer (3,[]))

assert(comparison)

arr = np.array ([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j])

comparison = np.array_equal(arr , quantumComputer (2,[]))

assert(comparison)

Tips 1: The code below does not throw any error assert

assert (1. == 1. + 0.j)

Tips 2: checks the function numpy.zeros ;)

3 Handle one gate

The goal of this section is to make your quantum computer handle one gate with one input.

3.1 Iterative kronecker product

The solution of this part is given below and in the file: computeMatrix.py

To do so, you will have to program the function computeMatrix. This function takes into
input a matrix :2x2 baseMatrix, an integers : nbQbit, and an integer fQbit. This function
output:

I
⊗(nbQbit−fQbit−1)
2 ⊗matrix⊗ I⊗fQbit

2

. Let’s consider
I⊗3 = I ⊗ I ⊗ I

and
I⊗0 =

[
1
]

The function must pass this test:

m = [[5]]

arr = [[5]]

assert (np.array_equal(computeMatrix(m, 1, 0), arr))

m = [[5]]

arr = [[5.0,0],

[0 ,5.0]]

assert (np.array_equal(computeMatrix(m, 2, 0), arr))

m = [[0,1],

[1,0]]

arr = [[0., 1., 0., 0.],

[1., 0., 0., 0.],

[0., 0., 0., 1.],

[0., 0., 1., 0.]]

assert(np.array_equal(computeMatrix(m,2,0), arr))

m = [[1 ,2] ,[3 ,4]]

arr = [[1., 0., 2., 0.],

[0., 1., 0., 2.],

[3., 0., 4., 0.],

[0., 3., 0., 4.]]

assert(np.array_equal(computeMatrix(m,2,1), arr))

Lecturer: Paul-Emile Morgades QCOMP 4

https://epitafr-my.sharepoint.com/:u:/r/personal/paul-emile_morgades_epita_fr/Documents/QCCOMPPW%202022%20Given%20file/QCCOMPPW%202022%201/computeMatrix.py?csf=1&web=1&e=TVln30


EPITA 2022 QCOMP ICE Specialization

m = [[1 ,2] ,[3 ,4]]

arr = np.kron(np.kron(np.identity (2),m), np.identity (2))

assert(np.array_equal(computeMatrix(m,3,1), arr))

Here is the solution of the exercise:

def computeMatrix(baseMatrix, nbQbit, fQbit):

res = np.identity(1)

for j in range(nbQbit):

i = nbQbit - 1 - j

if(i == fQbit):

res = np.kron(res, baseMatrix)

else:

res = np.kron(res, np.array([[1,0],[0,1]]))

return res

3.2 Handle one NOT gate

Now you have all the key in hand to handle one NOT gate.
To do so, if there is a NOT gate in the circuit you will have to:

1. compute your state vector (for example for 2 qubits you compute [1. 0. 0. 0.])

2. compute the NOT gate corresponding matrix using the function computeMatrix. Do
this accordingly to the number of qubits in the circuit and its position in the circuit. Here

is the matrix you have to give in input to computeMatrix in this case:

[
0 1
1 0

]
3. multiply the transposition of your state vector with the matrix you have just computed.

Here is the evolution of the state vector during the computation:

0 X 1

0 0

step 1 step 2

At step 1 the state vector is equal to: [
1 0 0 0

]
At step 2 the state vector is equal to:

(

[
1 0
0 1

]
⊗
[
0 1
1 0

]
)×

[
1 0 0 0

]t
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

× [1 0 0 0
]t

=
[
0 1 0 0

]
Here what it does in pseudo-code:

def quantumComputer(nbQubits,quantumGates):

stateVector = generate the state vector

(for example for 2 qubits you compute [1. 0. 0. 0.])

CorrespondingMat = computeMatrix([[0,1],[1,0]],nbQubits,

quantumGates[0].fqubit)

return CorrespondingMat * transpos(stateVector)

Lecturer: Paul-Emile Morgades QCOMP 5



EPITA 2022 QCOMP ICE Specialization

Your quantum computer must pass this test:

arr = quantumComputer (2,[ QuantumGate(TypeOfQuantumGate.NOT ,0)])

assert(np.array_equal(arr ,[0., 1., 0., 0.]))

3.3 Handle one Hadamard gate

Now you will have to handle one Hadamard gate. To compute the corresponding matrix of an
Hadamard gate you just have to act like for the NOT gate, except that you use the Hadamard
matrix as a 2x2 matrix:

1√
2
×
[
1 1
1 −1

]
Your quantum computer must pass this test:

arr = quantumComputer (1,[ QuantumGate(TypeOfQuantumGate.HADAMARD ,0)])

assert(np.isclose(arr ,[1/ math.sqrt (2), 1/math.sqrt (2) ]).all())

4 Handle many gates

For validating this section, your quantum computer must handle many gate.
To do so, first you have to compute the corresponding matrix of every gate and then multiply
them in the reverse order.
Here is the evolution of the state vector if there is two not gate on the first qubit:

0 X X 1

0 0

step 1 step 2 step 3

At step 1 the state vector is equal to: [
1 0 0 0

]
At step 2 the state vector is equal to:

(

[
1 0
0 1

]
⊗
[
0 1
1 0

]
)×

[
1 0 0 0

]t
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

× [1 0 0 0
]t

=
[
0 1 0 0

]
At step 3 the state vector is equal to:

(

[
1 0
0 1

]
⊗
[
0 1
1 0

]
)×

[
0 1 0 0

]t
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

× [0 1 0 0
]t

=
[
1 0 0 0

]
Here a drawing that will help you:

Lecturer: Paul-Emile Morgades QCOMP 6



EPITA 2022 QCOMP ICE Specialization

Your quantum computer must pass this test:

arr = quantumComputer (1,[ QuantumGate(TypeOfQuantumGate.NOT ,0),

QuantumGate(TypeOfQuantumGate.HADAMARD ,0)])

assert(np.isclose(arr ,[1/ math.sqrt (2), -1/math.sqrt (2) ]).all())

5 Bonus: Handle CNOT gate

5.1 Compute CNOT matrix

Program the function computeCNOT. This function takes in input an integers: nbQbit,
an integers: fQbit and an integer: sQbit. Consedering fQubit as the control qubit2. This
function outputs the corresponding CNOT matrix. To compute this matrix there is an elegant
way you can find here: click here. Yet this way is complicated, so we will explain a simpler,
less elegant way.
For two bit in the classical computing world the CNOT gate act this way:

A A

B AB + AB

And has this truth table:

fQbit sQbit fQbit output sQbit output
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

So in our quantum computing world, for 2 qubits, using the IBM convention, we have a such
”truth table”:

2fQbit and SQbit must be different. Yet your work will never be tested with fQbit = sQbit

Lecturer: Paul-Emile Morgades QCOMP 7

https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qubit-system-where-the-control-target-qu


EPITA 2022 QCOMP ICE Specialization

Input Output
1

0

0

0




1

0

0

0




0

1

0

0




0

0

0

1




0

0

1

0




0

0

1

0




0

0

0

1




0

1

0

0


So we have a such corresponding matrix:

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Here a pseudo-code algorithm that computes the corresponding matrix for the general case:

getTheBit(i,j): return the jth bit of i

notTheBit(i,j): negate jth bit of i and return the number

computeCNOT(nQubits , fQubit ,sQubit):

create a (2** nbQubits) * (2** nbQubits) matrix m, filled with 0.

for i in 0, 2** nbQubits :

if(getTheBit(i,fQbit) == 1):

j = notTheBit(i,Sqbit)

m[i,j] =1

else:

m[i,i] =1

return m

Your function computeCNOT must pass this test:

arr = [[1., 0., 0., 0.],

[0., 0., 0., 1.],

[0., 0., 1., 0.],

[0., 1., 0., 0.]]

assert(np.array_equal(computeCNOT (2,0,1) , arr))

Lecturer: Paul-Emile Morgades QCOMP 8



EPITA 2022 QCOMP ICE Specialization

5.2 Back to our quantum computer

Now you have all you need to handle CNOT gate in our quantum computer. Just to do it!
Your quantum computer must pass this test now:

arr =quantumComputer (2,[ QuantumGate(TypeOfQuantumGate.NOT ,1),

QuantumGate(TypeOfQuantumGate.CNOT ,1,0)])

assert(np.array_equal(arr , [0,0,0,1]))

6 Compute Probability

Program the function computeProbability. This function takes in inputs an array of com-
plex numbers: tab. This function output an array of the same dimension. Every coefficient of
the output is computed this way:

∀ i ∈ [0, length(tab)[

output[i] =
|tab[i]|2

Σ
tab.length()−1
k=0 |tab[k]|2

This function must pass this test:

arr =quantumComputer (1,[ QuantumGate(TypeOfQuantumGate.NOT ,0),

QuantumGate(TypeOfQuantumGate.HADAMARD ,0)])

assert(np.isclose(computeProbability(arr) ,[0.5 ,0.5]).all())

This function computes the probability of each combination to comes out when you mesure
every qubit.

Lecturer: Paul-Emile Morgades QCOMP 9


	Introduction
	Given file
	Submission
	Python requirements
	Reference
	Test
	Documentation

	Generate state vector
	Handle one gate
	Iterative kronecker product
	Handle one NOT gate
	Handle one Hadamard gate

	Handle many gates
	Bonus: Handle CNOT gate
	Compute CNOT matrix
	Back to our quantum computer

	 Compute Probability

