EPITA 2021 QCOMP ICE

QCOMPPW102: Qiskit practical work

7>
Based on:
MITx: 8.370.1x Quantum Information Science I, Part I

Practical work Outline: During This practical work we will learn how to program on a
quantum computer by using Qiskit.

Contents
(1 _Introductionl.
[LI Documentationl
L2 Given filel
(1.3 Python requirements|
[L4 _Submissionl
[I.5 Debugging|
2 Examplel
B Bell statel. 4
[AND gate] 4
[Quantum Fourier transformation for 3 qubits|. 4
[6 Deutsch problem|. 6!
[7 General quantum Fourier transtormation|
[Deutsch-Joza algorithm| 7
[9 Bonus: execute your code on a real quantum computer, 8

Lecturer: Paul-Emile Morgades QCOMP 1

EPITA 2021 QCOMP ICE

1 Introduction

For this practical work, you will have to program by using Python3. The only librairies you
will need are Qiskit and Numpy.

If you can’t download Qiskit with Pycharm, you can program online with the IBM quantum labl
Click on the link, create an account and then choose quantum lab.

1.1 Documentation

You will find here all the information on Qiskit you would need: https://qiskit.org/
documentation/stubs/qiskit.circuit.QuantumCircuit.html

1.2 Given file

You can download the given file here.

1.3 Python requirements

The Python requirements are the same of the previous workshop and you can install them with
the given requirements.txt.

1.4 Submission

Your code will need to be submitted using github, on this assignment. The only files that
matter to us are the given Python files named exercise_*.py, and these are the only files that
you should ‘git add‘.

Every practical has a deadline. Today’s one is on Sunday the 12th of december at 23:59.
The grade is determined by the script run_test_suite.py. To run it through Pycharm, you
have to open it and click on the green arrow:

big_file print_the_key

__hame ==

print_the_key()

Please don’t mind the red underlining of big_file. It will output something like this:

Your mark is: O
Your proof of work is: 0,9967204840567662

You will have to put the proof of work in this Excel file. Your proof of work represent your
mark, so update it every time you have a better mark. You also have to push your corresponding
work on GitHub.

1.5 Debugging

Do not try to debug by looking at the output of the circuit, but debug by printing the circuit.
You can print a Qiskit circuit named circuit this way:

print(circuit.draw())

Lecturer: Paul-Emile Morgades QCOMP 2

https://quantum-computing.ibm.com/
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html
https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html
https://epitafr-my.sharepoint.com/:f:/g/personal/paul-emile_morgades_epita_fr/Ej_ciecy_PdCoiSCwrZp2xIBOk13JJV8mVS7_fbpO7E1pg?e=tpZV1N
https://classroom.github.com/a/SF-QnjPN
https://epitafr-my.sharepoint.com/:x:/g/personal/paul-emile_morgades_epita_fr/Eey5CQZxSxpDsKCbOMrnTiEBtpZ32xUvHPQnmLxYJ-TWog?e=7HeHCO

EPITA 2021 QCOMP ICE

2 Example

This section is given as an example, you do not have to submit it. The solution to
this exercise is given below.

For validating this section, you have to program the function example. This function takes no
input. This function output a one qubit qiskit circuit having one Hadamard gate. You need
to program it in the file: example.py.

Here is the content of example.py:

import math

import numpy as np
from qiskit import QuantumCircuit, execute, Aer

def example():
pass

circuit = example ()

print ("the circuit:",circuit.draw())

sim = Aer.get_backend('statevector_simulator')
job = execute(circuit, sim)
arr = job.result().get_statevector (circuit)

assert (np.isclose (arr,[1/math.sqrt(2), 1/math.sqrt(2)]).all())

circuit.measure_all ()

simulator = Aer.get_backend('qgasm_simulator')

job = execute(circuit, simulator, shots=1000)
result = job.result ()

counts = result.get_counts(circuit)

print ("Execution of a quantum computer:\n",counts)

Lecturer: Paul-Emile Morgades QCOMP 3

N

EPITA 2021 QCOMP ICE

When you have solved the exercise, executing this file should print something close to this:

g_9: |e>{ H

{'1': 507, '@': 493}

The circuit has to be exactly the same, yet it is not the case of the execution on simulation of
quantum computer. Indeed the value only have to be close (‘ex: {’17: 485, °0": 515}, {"1": 492,
'0%: 508}, {’17: 503, °0": 497}).
Here is the function example when you have solved the question:
def example () :

circuit = QuantumCircuit (1)

circuit .h(0)
return circuit

3 Bell state

For validating this section you have to program the function bellState in the file bellState.py.
This function takes no input. This function output a 2 qubits Qiskit circuit. The qubits
bellState outputs must be in a bell state. A bell state is the simplest example of quantum
entanglement. It means that by knowing the value of one qubit you can deduce the value of
the other one.

After executing your script, it should output:

It is a bell state!
{'00': 498, '11': 502}

Or:

It is a bell state!
{'01': 519, '10': 481}

4 AND gate

For validating this section you have to program the function AND in the file AND.py. This
function takes no input. This function output a 3 qubits qiskit circuit. This circuit must
compute an AND between the first and second qubits. The value of the second and third
qubits must be 0 or 1 (both are fine).

After executing AND.py, it should print:

Best 'AND' EU!

5 Quantum Fourier transformation for 3 qubits

For validating this section you have to program the function qft in the file QFT3.py. This
function takes no input. This function output a 3 qubits Qiskit circuit. This circuit must
compute a quantum Fourier transform. A Fourier transform performs a change of basis on
numbers. This change of basis has many uses, for example, it is used in digital image processing.
The complexity of this algorithm scales exponentially on a classical computer, yet fortunately,
it scales in a quadratic way on a quantum computer.

For this exercise, you will have to use the gate: CU1. This gate does not change the state
|00), [01) and |10). Yet it transforms the state [11) in |11) e?. Where 6 is an angle in radian.

Lecturer: Paul-Emile Morgades QCOMP 4

EPITA 2021 QCOMP ICE

The gate does not change the probability to measure |00), |01), |10), or |11). Nevertheless it
changes the quantum phase. Certain types of gate will have a different output according to the
quantum phase.

Here is the matrix representation of this gate:

1 00 O
010 0
001 0
00 0 e

Lecturer: Paul-Emile Morgades QCOMP 5

EPITA 2021 QCOMP ICE

Here is how to use it on qiskit with § = %ﬂ:
circuit.cp(pi/4,0,2)

The main goal of the exercise is to make you understand how to draw a circuit using qiskit.
Just focus on the visual representation of your circuit.

Here is the content of QFT3.py:

After this file is executed it should output:

q_o: |e = = H X-
| lpi/2

g_1l: |e = H
‘pi/4 |pi/2

g_2: |e>{ H = = X—

You are good at computing quantum Fourier transformation!

{'ee1': 133, 'ele': 133, '111': 115, 'l1ee': 114, '1el': 117, "11e': 126,
‘eee’: 118, 'ell’: 144}

6 Deutsch problem

For validating this section you have to program the function deutsch in the file deutsch.py.
This function takes as input a Qiskit quantum gate: oracle. This oracle is supposed to be
the Deutsch oracle. This function must output a 2 qubits Qiskit circuit, solving the Deutsch
problem.

You are not used to Deutsch problem yet, so you should just focus on its visual representation.
We provide you the function dj-oracle, this is IBM’s implementation of the Deutsch oracle.
This function takes into input the string ”balanced” or the string ”constant”. This function
outputs an oracle which is either constant or balanced according to the string.

To add the oracle to your Qiskit circuit use you can act this way:

circuit.append(oracle, [0,1])

Here is the content of the file deutsch.py:
After executing this file it should print this:

g_©: |e>{ H] H H
Oracle
g 1l: |e>{ X H H H1 —

Your Deutsch algorithm handle well constant oracle.
Your Deutsch algorithm handle well balanced oracle.

7 General quantum Fourier transformation

For validating this section you have to program the function qft in the QF TN.py file. This
function takes as input an integer: n. This function outputs an n qubits circuit computing the
quantum Fourier transformation for n qubits. Once again the goal of this section is to make
you draw the circuit, so you should rather focus on the emerging visual pattern.

You can use numpy to define the constant pi

Lecturer: Paul-Emile Morgades QCOMP 6

EPITA 2021

QCOMP

ICE

After executing the file it should print this:

QFT for 4 qubits:

q_e: |e » » » 'ﬁ:_}lx—
| |pi/2
g 1l: |e = = H —a&——X—r
| pi/a |pis2

g 2: |e = H —= =

pi/8 ‘pi/4 |pi/2
g_3: |e>{ H = = = X—
QFT for 5 qubits:
q_e: |e = =
g_1l: |e = =
g 2: |e = ‘ =

‘ pi/8 ‘pi/4 |pi/2

g_3: |e = H = = =

pi/i6 |pi/8 ‘pi/4 |pi/2
g_4: |e>{ H (= = = =
L
«q_0: & | H —X—
« ‘ |pi/2
«g_1: = H -a———X———
« ‘ pi/4 |pi/2 ‘
«q_2: & =
L ‘
«q_3: X
L
«q_4: X—

L4

You handle quantum Fourier transfomation

like a boss

8 Deutsch-Joza algorithm

For validating this section you have to program the function dj in the file deutsch_joza.py.
This function takes as input an integer: n and a qiskit quantum gate: oracle on n +1 qubits.
This oracle is supposed to be the Deustch-Joza oracle. The function dj must output a n+1
qubits qiskit circuit, solving the deutsch problem.
You are not used to the Deutsch-Joza problem, so you just focus on its visual representation.
We provide you the function dj-oracle, this is an IBM implementation of the Deutsch-Joza
oracle. This function takes in input the string ”balanced” or the string ”constant” and an
integer: n. This function outputs an oracle which is either constant or balanced according to
the string. This oracle is a quantum gate on n+1 qubits. Here is the content of deutsch-

joza.py:

After executing the file it should output this:

Lecturer: Paul-Emile Morgades

QCOMP

EPITA 2021 QCOMP ICE
g_©: |e>{ H e H H
g_1l: |e>{ H 1 H H
g_2: |e>{ H 2 H H
gq_3: |e>{ H 3 H H |
Oracle
q_4: |e>{ H 4 —H H |
g_5: |e>{ H 5 H H
g_6: |e>{ H 6 H H
q_7: |e>{ X HH7 —

Your Deutsch-Joza algorythm handle well constant oracle
Your Deutsch-Joza algorythm handle well balanced oracle

9 Bonus: execute your code on a real quantum computer

In the file executing_on_real_quantum_computer.py, you will find what you need to execute
Qiskit code on a real quantum computer in Santiago. To use it:

e First you have to create an API key at: https://quantum-computing.ibm.com/.

e Then put your API key in file executing_on_real_quantum_computer.py.

o Execute the file.

e And wait for hours or even more...

I advise you to only execute algorithm needing five or less qubits. This is not evaluated.

Lecturer: Paul-Emile Morgades

QCOMP 8

executing_on_real_quantum_computer.py
https://quantum-computing.ibm.com/
executing_on_real_quantum_computer.py

	Introduction
	Documentation
	Given file
	Python requirements
	Submission
	Debugging

	Example
	Bell state
	AND gate
	Quantum Fourier transformation for 3 qubits
	Deutsch problem
	General quantum Fourier transformation
	Deutsch-Joza algorithm
	Bonus: execute your code on a real quantum computer

